

KU LEUVEN

Summary slides

Design sprint Czechia – March 21st 2023

Smith

INDICATE

Contents

- Key Take aways & To Dos
- References to national legislation
- Slides policy brief (March, 21st) (slides 9 35)
- Slides Design Sprint (March, 21st)
 - Intro 37-46
 - Benchmark 47 98
 - Frontrunners 99 121
 - Communication 122-127
 - Operational support 128 134

Key Take aways Based on the discussions during the Czech design sprint

INDICATE

- Discussion about the sample of buildings and renovations as part of the archetypes – besides new buildings the Czech consortium considers also including renovations in the scope because of a lack of new building cases and a request from the Czech government. Although renovations are more complex and diverse, it can be included, but the representativeness of the new buildings remains important. This can be ensured by:
 - Considering different structures, materials, energy performance levels, sizes and typologies within the sample

Key Take aways Based on the discussions during the Czech design sprint

- Expect 4 typologies on new build:

- Family houses (not mandatory to have the bill of quantity)
- Residential buildings
- Educational buildings
- Administrative buildings (for the last three typologies it is mandatory to have bill of quantities).
- It was discussed how to overcome the challenge of not having the complete bill of quantity on family houses when this is an important typology due to the number of new builds. Starting with project specific data on the envelope (which is available) and using averages for internal building parts is a method also used in some front runner countries.
- A differentiated communication strategy should be crafted for different stakeholder groups. The idea came up to create a separate message house for policymakers, data partners and other industry professionals. The Czech team and the WGBC can follow up and inform the consortium about the outcome.

Next steps Based on the discussions during the Czech design sprint

- Coordinate a communication outreach and ensure the Ramboll Reports are properly referenced* (Czech consortium)
- Reach out to Martin with questions related to the sample and method (Czech consortium)

*https://c.ramboll.com/reducing-whole-life-carbon https://ramboll.com/media/rgr/embodied-carbon-and-how-to-tackle-it

KU LEUVEN

References to national legislation

From EU frontrunning Member States concerning WLC-regulation

Links to national WLC regulation

INDICATE

• Netherlands

- Legal reference construction law
- https://rijksoverheid.bouwbesluit.com/Inhoud/docs/wet/bb2012/hfd5/afd5-2#art5.8
- Calculation method https://milieudatabase.nl/nl/milieuprestatie/bepalingsmethode/

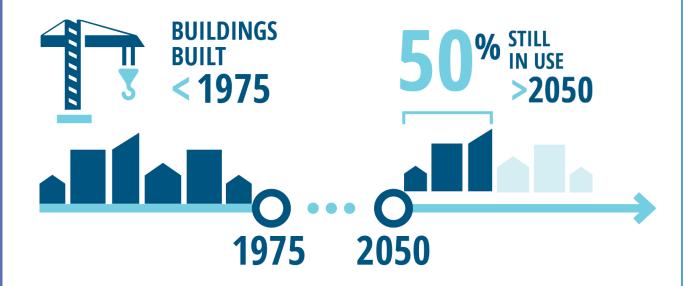
• France

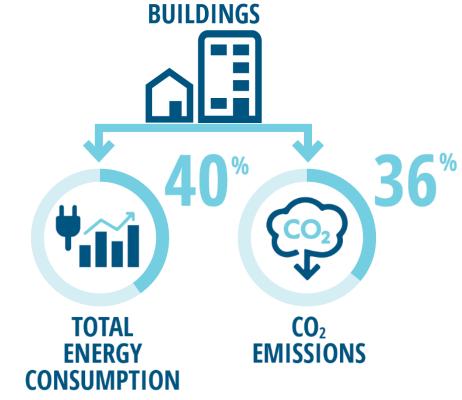
- Legal reference > "Bâtiments Neufs" on the top header > RE2020
- https://rt-re-batiment.developpement-durable.gouv.fr/re2020-r320.html
- For guidelines, clarifications, applicability and other resources, select "Bâtiments Neufs" on top header > select RE2020 > select "Accompagnement des Acteurs" or FAQ
- Finland
 - Legal reference https://valtioneuvosto.fi/paatokset/paatos?decisionId=0900908f807d311e and legislative status https://www.fi/hankesivu?tunnus=YM027:00/2021
 - Calculation method (2019) <u>https://julkaisut.valtioneuvosto.fi/handle/10024/161796</u>
 - Overview study https://journal-buildingscities.org/articles/10.5334/bc.30/ and data overview ministry https://ym.fi/vahahiilinen-rakentaminen
- Denmark
 - Legal reference
 - https://bygningsreglementet.dk/Tekniske-bestemmelser/11/Krav/297_298#d578ff9b-87e2-42aa-8d81-a08f60c9b3d1
 - Guidance on building regulations <u>https://bygningsreglementet.dk/Tekniske-bestemmelser/11/BRV/Bygningers-klimap%C3%A5virkning</u> and knowledge centre with more information <u>https://byggeriogklima.dk/</u>
- Sweden
 - Legal reference <u>https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/lag-2021787-om-klimatdeklaration-for-byggnader_sfs-2021-787</u>
 - Guidance from the Housing Authority Boverkets <u>https://www.boverket.se/sv/klimatdeklaration/</u>

EU initiatives on whole life carbon regulation in buildings & good practice from frontrunners

KU LEUVEN

Smith

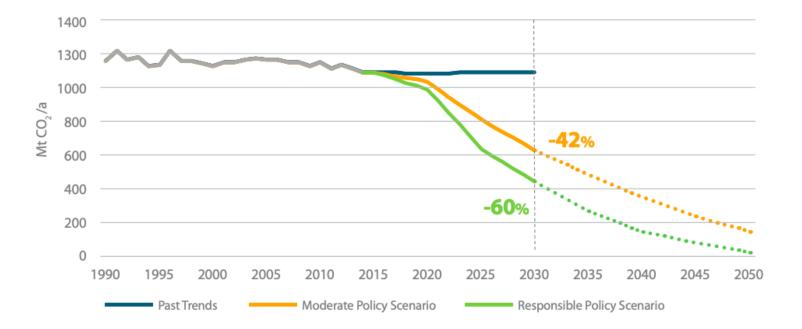




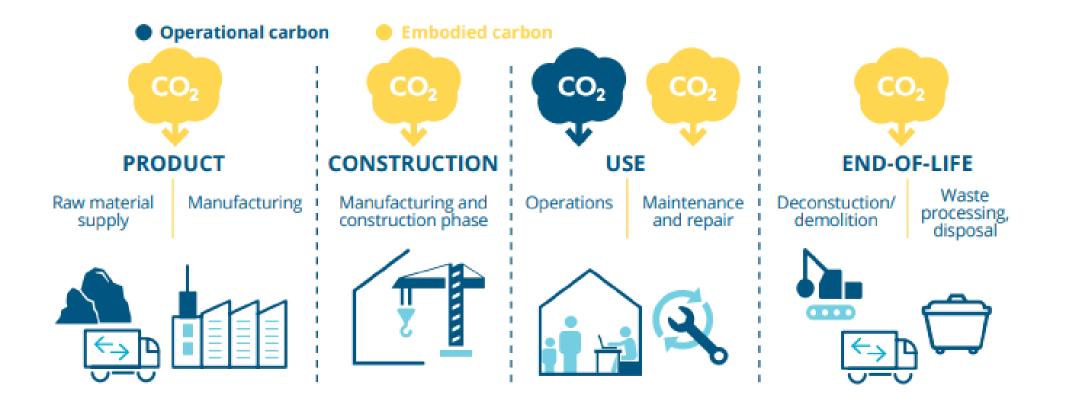
Agenda

- Why is Whole Life Carbon important?
- EU Policy Update
- Good Practice examples from frontrunning countries
- Conclusions

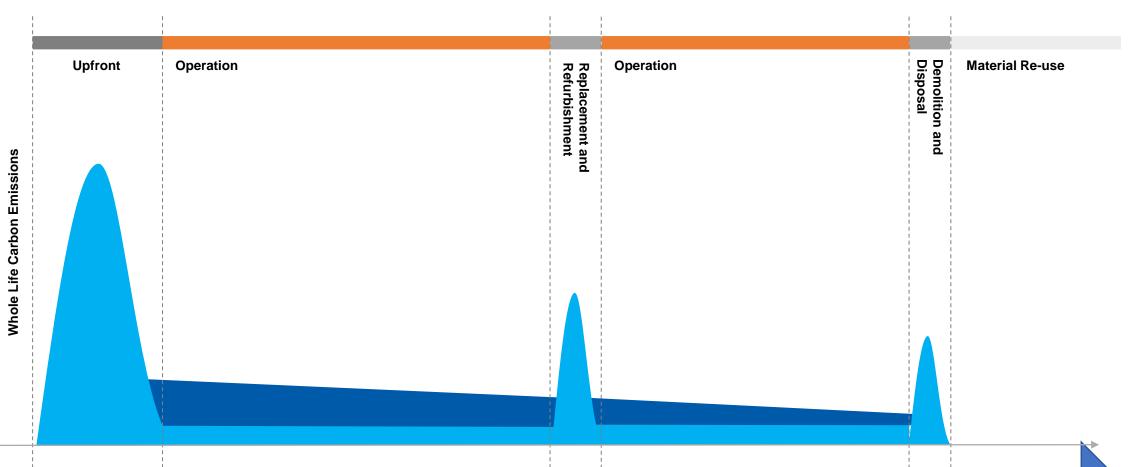
Relevance of the building **INDICATE** stock



- Building sector is responsible for more than one third of the EU's energy related emissions
- Czechia 34% of emissions*


Relevance of the building stock

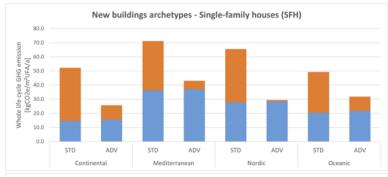
The current deep renovation rate of 0.2%/a needs to grow by at least a factor 10 to 2% and should approach 3% as quickly as possible. The share of fossil fuels in the energy mix in 2030 has to decrease by 57%.

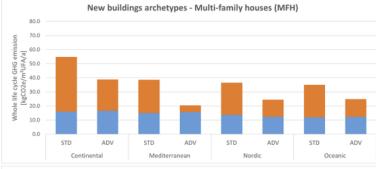

The renewable heat and electricity share will have to grow to 53% of the final energy demand.

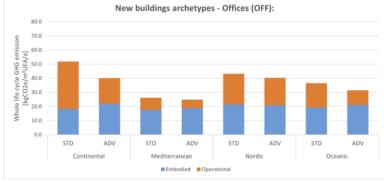
Lifecycle perspective on emissions

INDICATE

Lifecycle perspective on emissions

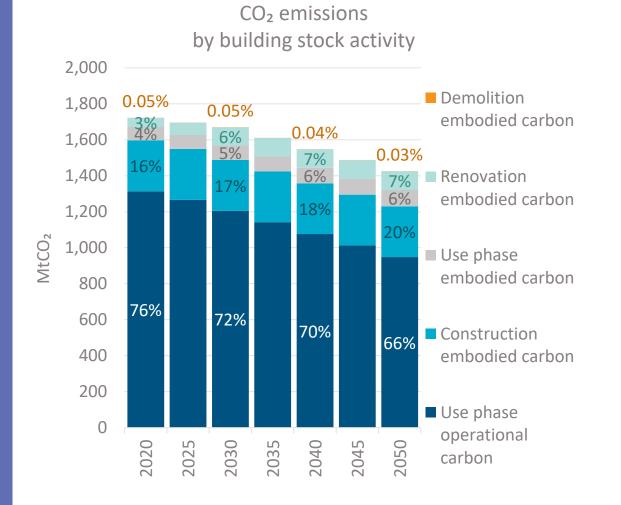

INDICATE


Emissions have to be cut from across the entire lifecycle of buildings


INDICATE

Why focusing exclusively on operational carbon is not enough

Whole life cycle embodied and operational carbon emissions (annualized)



• Example of Single Family Houses:

- Whole life carbon results vary across the regions but are always best for the advanced energy performance variants (ADV) compared to their standard energy performance counterparts (STD).
- Relative embodied carbon (EC) contribution to whole life carbon increases for advanced energy performance variants (ADV) operational carbon (OC) decreases.
- However limited increases of absolute embodied carbon (EC) are observed for advanced energy performance variants (ADV) compared to their standard energy performance counterparts (STD)

INDICATE

Looking ahead – if we don't act

- Whole life carbon emissions decrease by 17%
 - driven by operational emission reductions
 - reduction about 300 MtCO₂ despite the 40% building stock growth
- 28% savings in use phase operational carbon (366 MtCO₂) are driven by building envelope insulation and space heating decarbonisation fuel switch
- Embodied emissions increase relatively
- Current efforts insufficient to achieve net zero

The European Green Deal

- Net zero emissions in 2050
- Economic growth decoupled from resource use

GreenDeal

From words to action...

Renovation Wave

- 23 intervention points, a clear timeline (2021-2024)
- Review existing framework (EPBD, EED, RED) and new measures (Building Renovation Passport, MEPS, Building digital logbook)

INDICATE

- Holistic approach: energy and whole life cycle performance, renewable energy, decarbonisation of heating and cooling, finance, technical assistance
- Whole life-cycle performance roadmap to reduce carbon emissions from buildings by 2050
- Reviewing material recovery targets and supporting the internal market for secondary raw materials
- Success will depend on joined-up thinking, strict implementation and contributions from every actor in the value chain.

EU policy initiatives on WLC in buildings

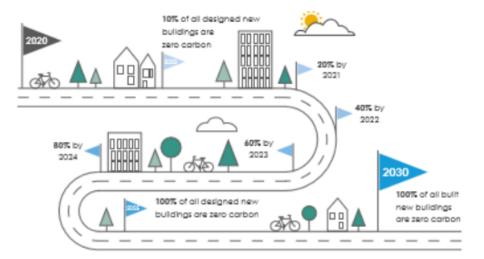
An incremental approach:

- 1. First step Requiring assessment and reporting
- 2. Second step setting targets and limit values

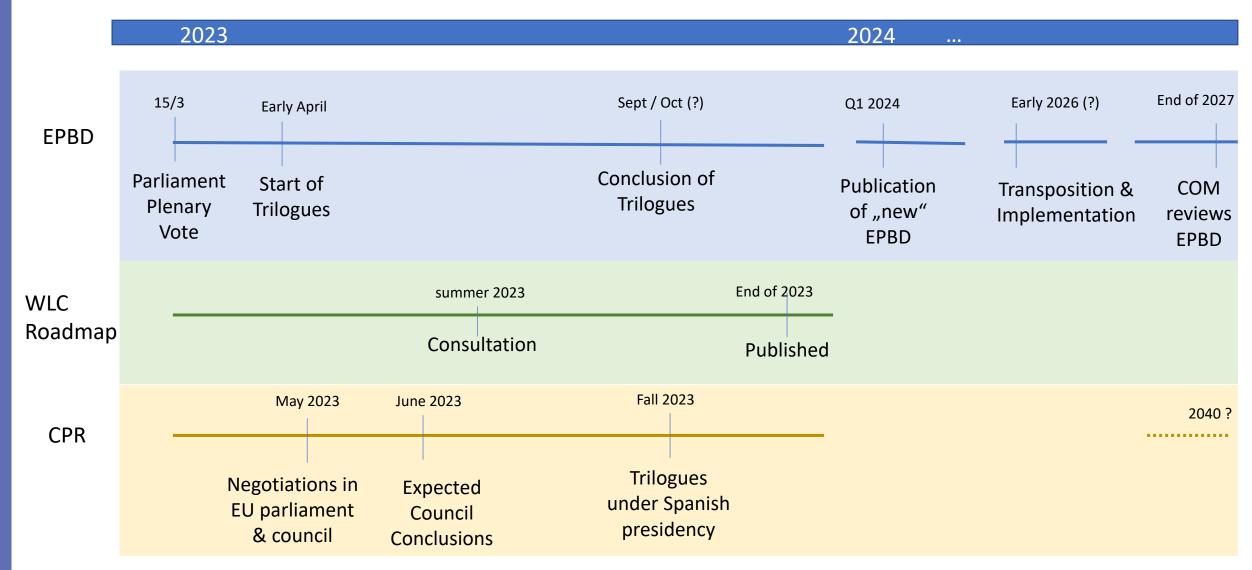
Level(s) is the basis on which to bring whole life carbon into building policy.

1) Measurement and reporting **INDICATE** requirements

- Spread knowledge and build market capacity
- Generation of data
- Soft reduction of whole life carbon
- Already in policy initiatives:
 - Sustainable Finance Taxonomy large (>5000m2) new constructions are required to disclose WLC as of January 2022
 - Energy Performance of Buildings Directive recast WLC disclosure requirements from 2027 onwards
 - **Construction Products Regulation** review information requirements on the products' environmental footprint


Level(s) is the basis on which to bring whole life carbon into building policy.

2) Benchmarks and targets


- Already being developed by EU COM (DG ENV, together with DG Grow):
 - Roadmap for reduction of whole life carbon
 - \checkmark Quantified targets, with milestones up to 2050
 - \checkmark Embodied and operational carbon
 - \checkmark Not a list of policy recommendations
 - Bringing together expertise and initiatives inspired by frontrunners – engage across the EU

Reference: LETI CEDG

Process & timeline

EPBD update - WLC

COUNCIL	PARLIAMENT
 New construction to disclose WLC on EPCs as of 1 January 2030 (2027 for buildings over 2000m2 No provisions for renovations Annex 3 – calculation methodology with reference to EN15798, Level(s) and CPR 	Lifecycle emissions should progressively be taken into account, in line with a Union methodology to be established by the Commission, starting with new , then renovated buildings, for which Member States should establish whole life-cycle greenhouse gas emission reduction targets .

INDICATE

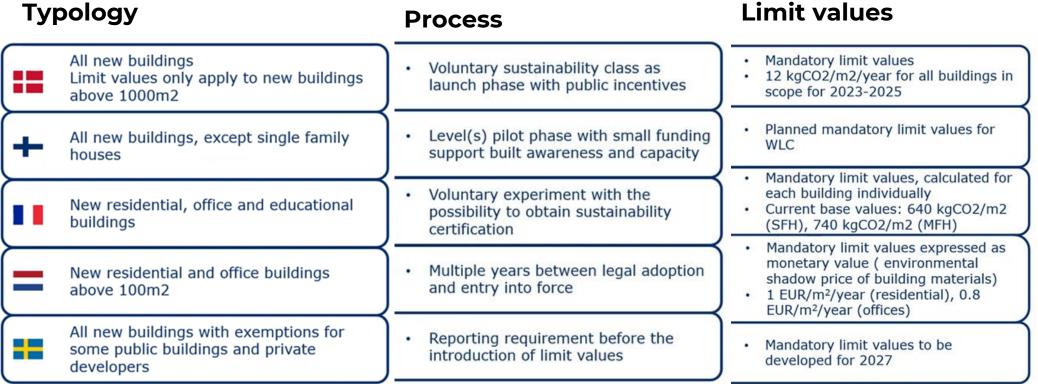
EPBD update – WLC

COUNCIL	PARLIAMENT
 New construction to disclose WLC on EPCs as of 1 January 2030 (2027 for buildings over 2000m2 No provisions for renovations Annex 3 – calculation methodology with reference to EN15798, Level(s) and CPR 	 NBRP with national WLC targets for 2025, 2030, 2035, 2040 Delegated act by 2025 for the COM to set out WLC methodology Disclosure requirements for <i>all</i> new buildings as of 2027 and <i>limit values</i> as of 2030 considering incremental tightening Existing buildings undergoing major renovations to disclose WLC of building parts Renovation Roadmaps to outline measures to reduce WLC

WLC legislation with limit values in force or agreed

Reporting obligation in force, limit values to be proposed

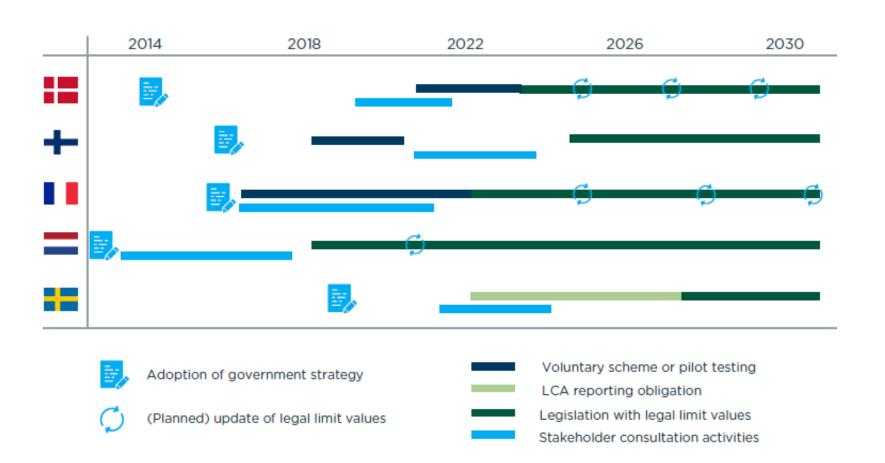
WLC legislation proposed


Other non-legislative LCA requirements in place (e.g. for public buildings or for public fund applications)

INDICATE

Leading EU Member States

- Netherlands (Documentation 2012; limit value 2018)
- France (2021)
- Sweden (2022 Documentation)
- Norway (2022 Documentation)
- Denmark (2022)
- Finland (2023)
- Germany, UK, Switzerland (WLC requierements for public buildings)


Diversity of approaches

····

Frontrunner countries: "key ingredients"

Key ingredients:

INDICATE

- Government strategy
- Stakeholder
 enagegement
- Voluntary scheme / pilot testing
- Gradual implementation of legislation

Source: Rambol / KU Leuven 2023

FINLAND - Timeline

2021-2022 2023 2017 2019 CO2 limit values • Legislative Land use and Agreement climate for buildings in preparations** Construction Act neutrality 2035 low carbon reform approved • Draft Legislative Nordic agreement construction proposal harmonization LCA roadmap* 01-2025 approach for buildings Public hearings (1 & 2) Testing and method Preparing control system Monitoring in-use development Possible notification obligation Control system impact • Preparation of regulatory before binding limit values assessments guidance and possible incentives (Env Ministry) The building base can be Development of the carbon connected to the control in footprint calculation model and Connection to planning and stages emissions database energy management Monitoring the emission data of Know-how and tools Expansion of pilot projects the building stock • Testing in public construction • Preparation of building emission projects and in the private sector data monitoring and statistics

FINLAND – Policy landscape

Calculation tool (.xls)

AutoS	Save 💽 Off	89) ~ (J ~	Þ	Rakennusten-hi	iilijalanjalje	n-arviointity	okalu-9.1	2.2019-D4EE18D2_E	E07C_48
File	Home	Insert	Page	Layout	Formulas	Data	Review	View	Automate	Help
Paste	X Cut [] Copy ~ ≪ Format Pa		Calibri B I	<u>u</u> ~ 🖽	• 11 • A^ • <u>&</u> • A				롾 Wrap Text 亞 Merge & Cen	ter ~
	Clipboard	inter ایرا		Fon		r <u>s</u>		Alignm	ient	15
R97	T	×	V 3	Ser						

Rakennusten hiilijalanjäljen arviointityökalu

Luonnos hiilijalanjäljen arvioinnin testausta varten 9.12.2019

Materiaalien päästötiedot

© VTT 2018. Testausvaiheen geneerinen päästötaulukko perustuu VTT:n eri lähteistä kokoamiin ja arvioimiin tuloksiin. Arvot on koottu siten, että ne kattavat elinkaaren vaiheet A1 - A5 (vaiheessa A5 vain arvioidun hukan osalta). Taulukkoa on viime vaiheessa päivitetty muutamilla hyvin karkeasti arvioiduilla tarkistamattomilla arvoilla. VTT:llä on vksinomainen omistus- ja tekijänoikeus kokonaistaulukkoon. Taulukkoa saa käyttää testaamiseen eikä sitä saa muuttaa, käyttää eikä luovuttaa käytettäväksi muuhun tarkoitukseen ilman VTT:n

Materiaali

Hiilijalanjälki Hiilikädenjälki Yksikkö Vaihtoväli (a

PAIKALLAVALUBETONI JA RAUDOITTEET

Betoniteräs	0.474	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C35 (portland)	0.146	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C35 (seossementti)	0.127	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C50 (portland)	0.175	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C80 (Portland)	0.210	kgCO2e/kg	Ei vaihdeta
PIHA JA POHJARAKENTEET			
Betoniantura ja -perustus			
(sis.raudoitteet)	0.160	kgCO2e/kg	Ei vaihdeta

percenta ja percentas			
(sis.raudoitteet)	0.160	kgCO2e/kg	Ei vaihdeta
EPDM-matto (synteettinen kumi)	2.694	kgCO2e/kg	30
Kevytsora	0.459	kgCO2e/kg	Ei vaihdeta
V +	0.000	1 000 //	F1

Emission database (together with Sweden)

С co2data.fi/rakentaminen/#en 0 6 \$ * •

SVENSKA ENGLISH SLIOMI

Emissions database for construction

Welcome to the open, free-of-charge emissions database for construction. The service presents average emissions data on construction products used in Finland and on construction processes and services. The aim is to harmonise the calculation of the climate impacts of buildings throughout their lifecycle and, through this, to promote low-carbon construction.

Emissions data has been compiled on readily accessible summary pages, but you can also read more detailed background studies. At first the service is available in English. Content in Finnish and Swedish will be included later on.

The responsibility for maintaining and developing the database rests with the Finnish Environment Institute SYKE, commissioned by the Ministry of the Environment.

More information about CO2data-service.

The development of the services continues - your feedback is welcome.

What is it all about? Frequently asked questions.

	Search	Search	Own list	
--	--------	--------	----------	--

☆ - Category > Solid wood > Heat treated planed timber for outdoor use

Heat treated planed timber for outdoor use

Lämpökäsitelty höyläpuu ulkokäyttöön

CONSERVATIVE VALUE FOR BUILDING PERMIT CALCULATIONS, GWP (A1-A3)

 Collaboration with 100+ industry experts

INDICATE

- Based on existing public information from various sources (RTS EPD, EPD Norge, IBU)*
- Comparison, selection and calculation of averages
- No product specific data
- Three waves of • testing – supported with subsidies / beta testing Level(s)

Version 1.00.008, 2022-12-06 1.2 kg CO₂e /kg

FINLAND

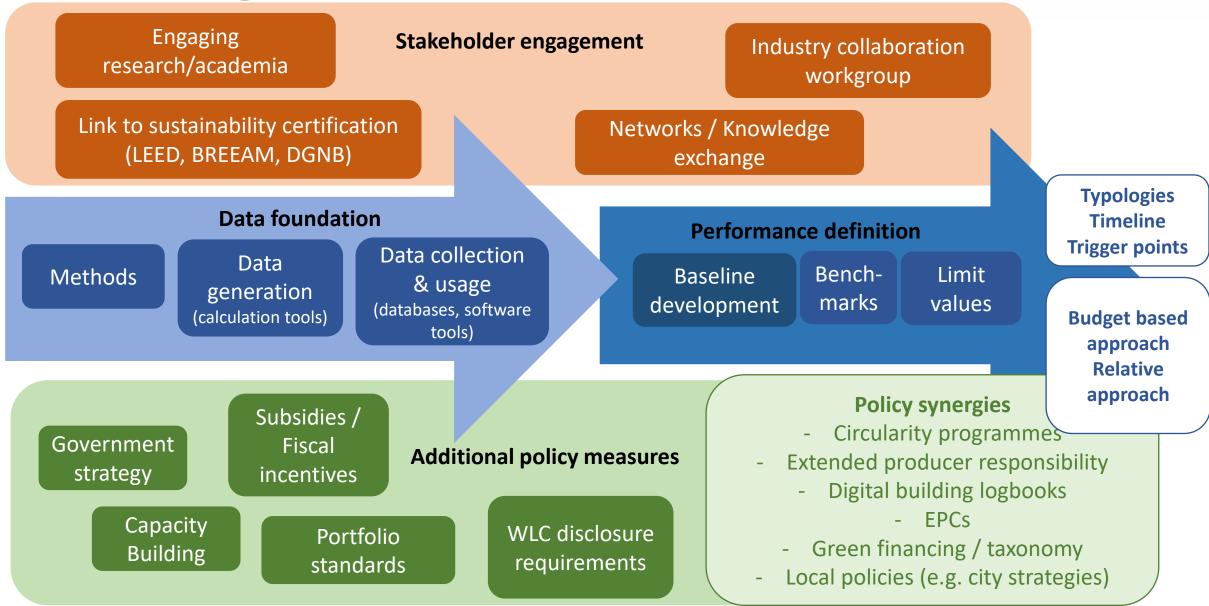
- Assessment method based on Level(s) and EN standards
- Software tools: free tool + market approach (e.g. OCLCA)
- Lessons for method and database development
 - Align with building design practice user friendly, which stage of the design process is this relevant?
 - Link to digitalization and BIM to avoid redundant work
 - Importance of verification different consultants and tools should be tested
 - Assessment of different databases what is required? How to structure the data?
 - Challenge: get small projects online without increasing administrative burden

INDICATE

FINLAND

- Importance international collaboration
 - Nordic Co-Operation
 - Relief to consult government officials with similar struggles
- Stakeholder engagement
 - Empathic approach understanding concerns is essential
 - Inform in advance now there is time to adjust
 - Offer subsidies to tackle problems
 - Limit values as enforcement method for laggers

Building Blocks for WLC regulation


Data foundation

Performance definition

INDICATE

additional policy measures

Building blocks of the toolbox **INDICATE**

INDICATE

Takeaways

- Not if, but how to regulate WLC
- Frontrunner countries influence policy development
- Comprehensive EU WLC reporting requirements coming in 2025 (implementation of national methodology) and 2027 start of compulsory reporting
- Data is not yet accurate, but we need action more than precision
- Ensure compliance with future regulation start measuring, share data and build capacity on WLC data collection and a baseline analysis

KU LEUVEN

Design Sprint Czech Republic

21th of March, 2023

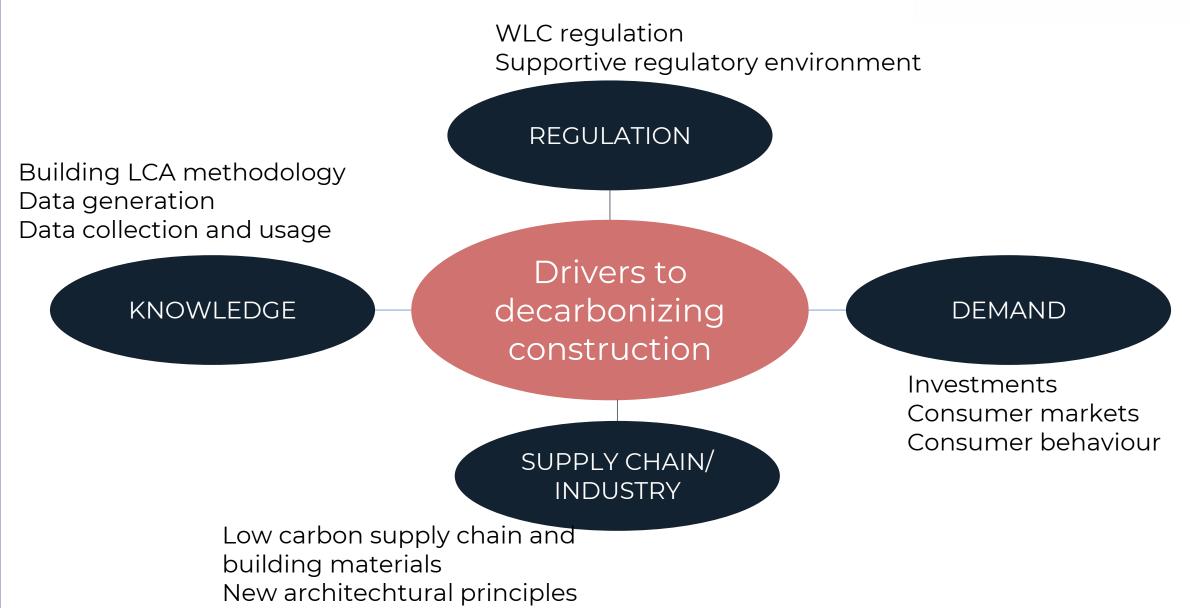
Smith

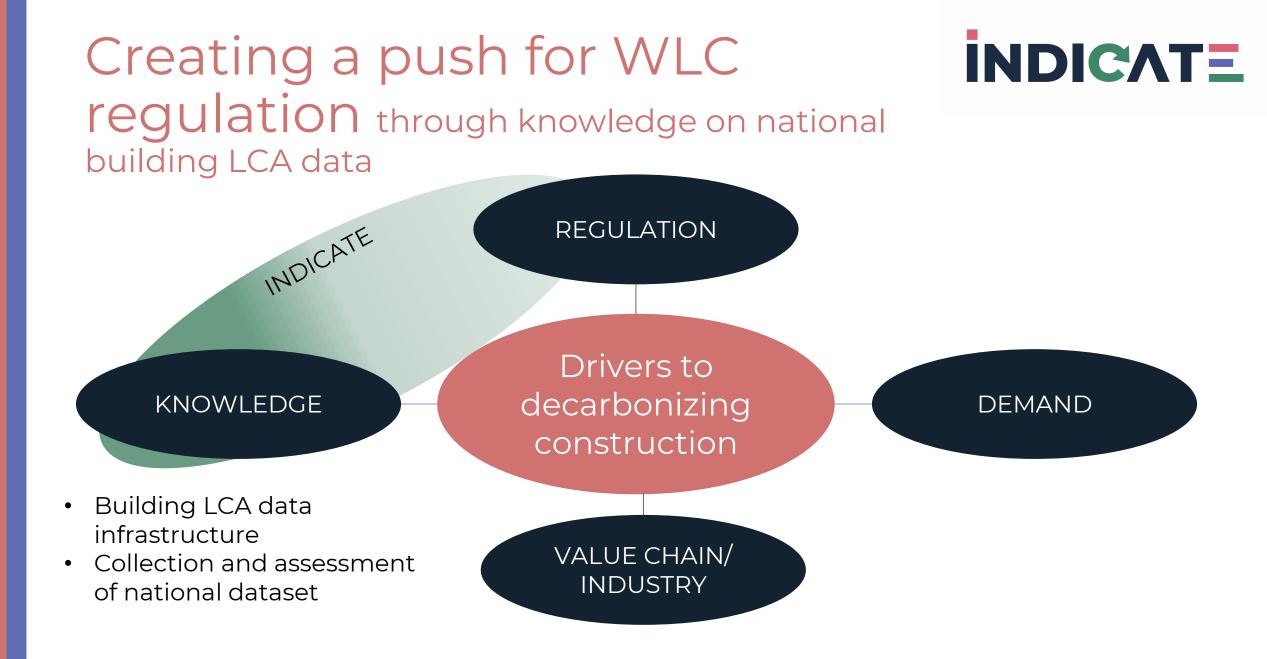
Design sprint agenda

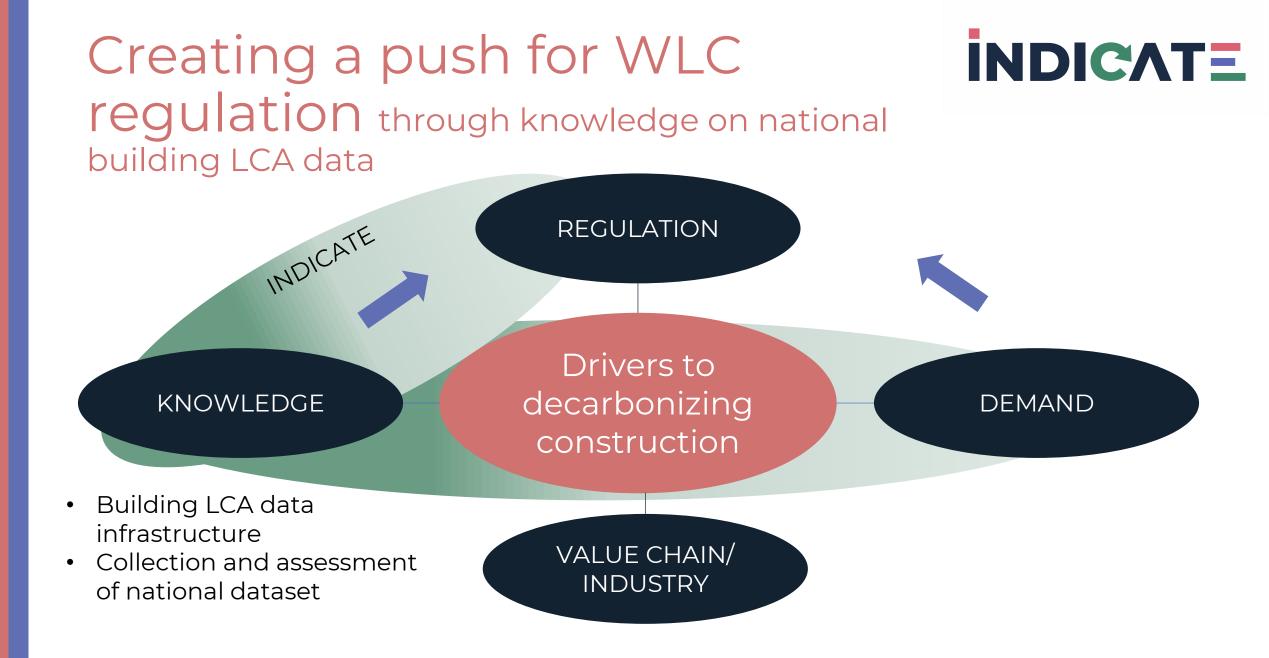
- Framing of the design sprint & round of presentations
- Data (Martin, KU Leuven)
 - Presentation: Methodological considerations and experience EU Baseline
 - Discussion: Data attributes and representative sample
- Lunch (12.45-13.35)
- **Policy** (Zsolt & Rutger, BPIE)
 - Presentation: recap frontrunner countries and building blocks WLC policy approach – incl. 2-3 in depth examples
 - Workshop: policy landscape and stakeholder mapping
- Communications (Miles, WGBC)
- **Operational Support** and Next Steps (Simone, Smith)
- Goodbyes (15.15)

Your design sprint

- Kick-off your work within the INDICATE initiative
- Involve stakeholders in both the discussion on LCA data architecture establishment & policy process
- Discuss how INDICATE partners can support you

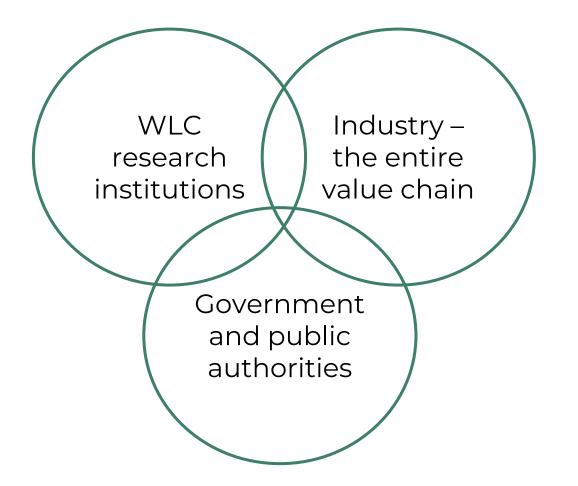



to decarbonize construction since the building and construction sector accounts for approximately 40% of global carbon emissions


We are on a mission!

REGULATION Drivers to KNOWLEDGE decarbonizing DEMAND construction VALUE CHAIN/ **INDUSTRY**

INDICATE



Co-creation is needed to reduce the carbon footprint of buildings

Why INDICATE?

To meet one of the most fundamental challenges to decarbonise buildings – **the lack of data to support policymaking and strategic business decision-making.**

With support from:

Laudes — Foundation

A philanthropy engaged in decarbonizing construction.

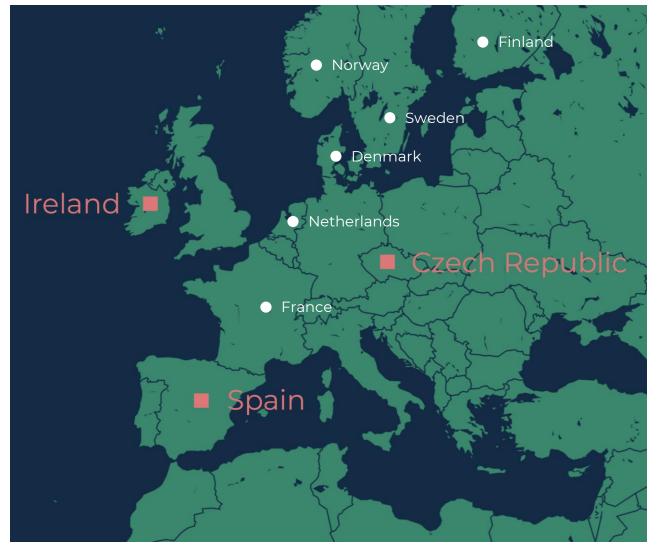
You are a part of a group Based on experience from front runner countries

Czechia

- Chance for Buildings Alliance
- Czech Green Building Council
- Technical University of Prague

With support from the Ministries of Environment and of Industry and Trade of the Czech Republic.

Ireland


- Irish Green Building Council
- University of Galway & Construct Innovate

With support from the Sustainable Energy Authority of Ireland

Spain

- Green Building Council España
- University of Seville

With the Government of Spain as observers

Round of presentations and aligning expectations

WHAT DO YOU EXPECT FROM THE DESIGN SPRINT?

Benchmarking Embodied Carbon of European Buildings Insights on Data Collection and Benchmark Analysis

Martin Röck

Research Associate, KU Leuven

KU LEUVEN

Smith

Outline

- Introduction
 - Person and projects
 - Why are we collecting data
- Data screening and results
 - Screening for representative data
 - Results of Whole Life Carbon analysis
- Data processing and analysis
 - Data collection (attributes, template)
 - Data processing and analysis (scripts)
- What next?
 - Recommendations
 - Q&A

KU LEUVEN

ÖAW ÖSTERREICHISCHE AKADEMIE DER

RAMBOLL

Laudes — Foundation

**** **** European Commission

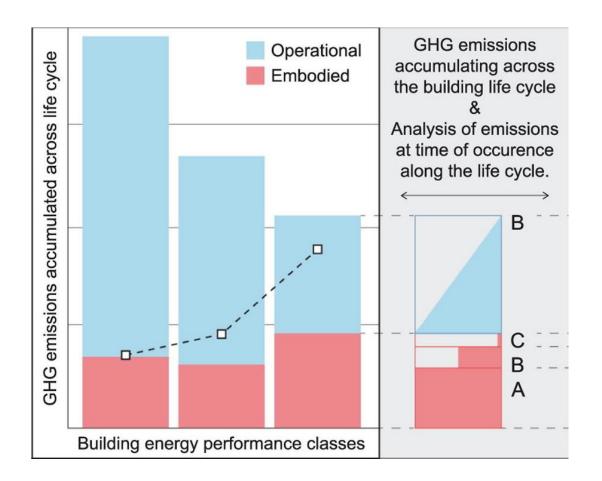
EBC Energy in Buildings and Communities Programme

European Climate Foundation

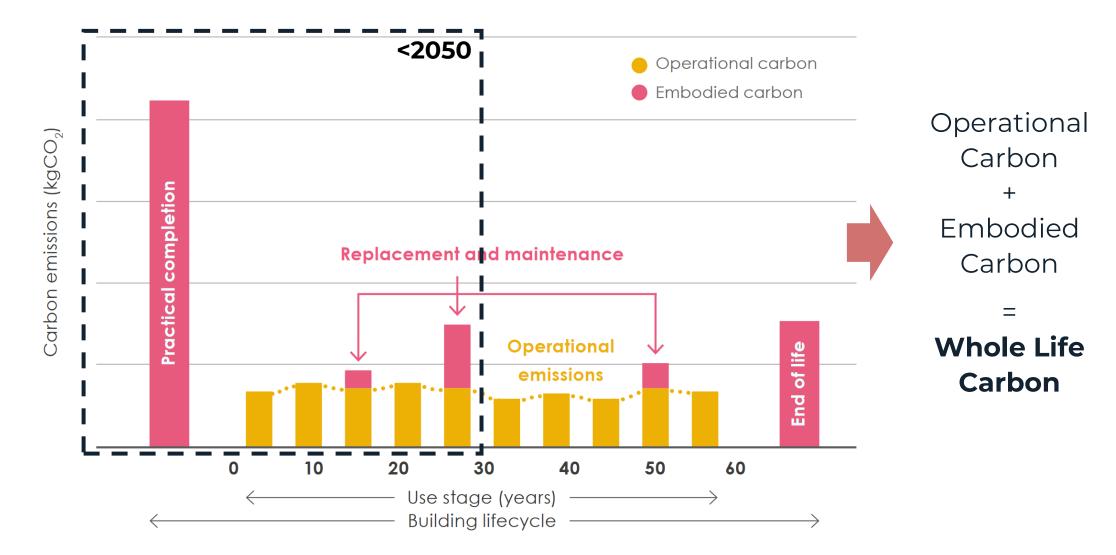
Martin Röck

Profile (selection)

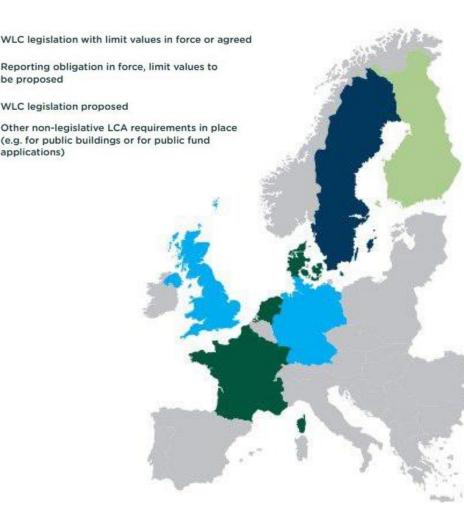
2023	Research Associate, KU Leuven (BE)
2021-2022	Lead Consultant Whole Life Carbon, Ramboll (DK)
2019-2022	Research Fellow, Austrian Academy of Sciences (AT)


Projects (selection)

2022-(2025)	EC: Life Cycle Carbon Reduction and Removal Scenarios (GROW)
2022-(2023)	ECF: EU policy models for reducing WLC of buildings
2020-2022	EC: Whole Life Carbon Roadmap Support Study (ENV)
2020-2022	LF: Towards Embodied Carbon Benchmarks for Europe
2016-2023	IEA EBC Annex 72: Life Cycle Assessment of Buildings
2018-2019	EC Level(s) Pilots: Sustainability Reporting Framework
2013-2016	IEA EBC Annex 57: Embodied Energy & CO ₂ Emissions


Why we collect data?

- Operational energy and carbon emissions already regulated in Energy Performance of Buildings Directive (EPBD)
- Increased importance and attention on new buildings' embodied carbon (material production, construction, renovation, demolition)
- Embodied carbon >50% of life cycle, dominating mitigation timeframe (efficiency gains, building complexity)



Why embodied carbon?

Why we collect data?

- Latest EPBD revision draft includes
 WLC reporting from 2027 onwards (with gradual implementation)
- EU frontrunners prepare via WLC data collection and benchmarking to define baseline values and targets
- Various EU countries have WLC reporting obligations or even limits proposed, agreed or in force already

Towards embodied carbon benchmarks for buildings in Europe

What gets measured gets done

Bright ideas. Sustainable change.

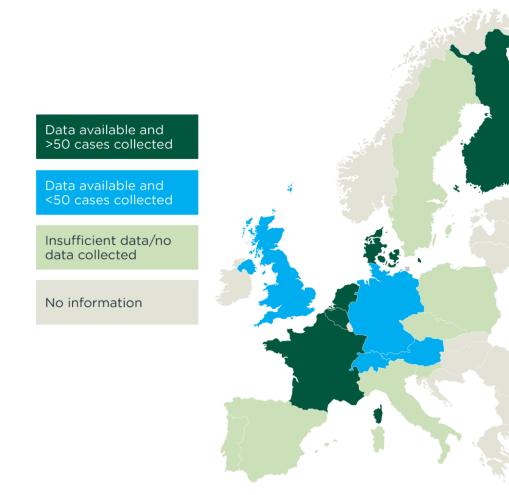
BUILD DEPARTMENT OF AALBORG THE BUILT ENVIRONMENT UNIVERSITY

Towards embodied carbon benchmarks for buildings in Europe – Project outline

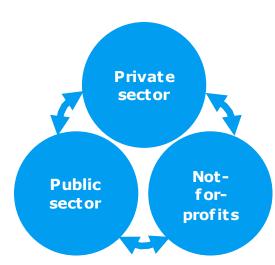
> **#1 What data is available on embodied carbon?** Embodied carbon data availability and quality in the EU

Designed and executed by: RAMBCLL

BUILD DEPARTMENT OF THE BUILT ENVIRONMENT


AALBORG University

With partners from KU Leuven (BE), NIBE (NL), CSTB (FR), and Ministry of the Environment of Finland (with Granlund/OneClickLCA)



Data screening and results

Data on embodied carbon is **INDICATE** largely lacking in most countries

- Search for EU countries where >50 cases available
- Data availability is a key issue
- Further challenges:
 - Representativeness
 - Comparability
 - Accessibility
 - Quality

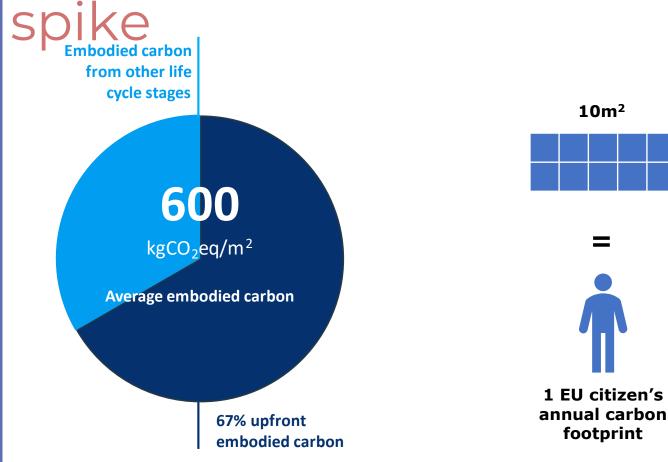
Röck M, et al. "Towards Emb the Data Challe

Data sources & partners

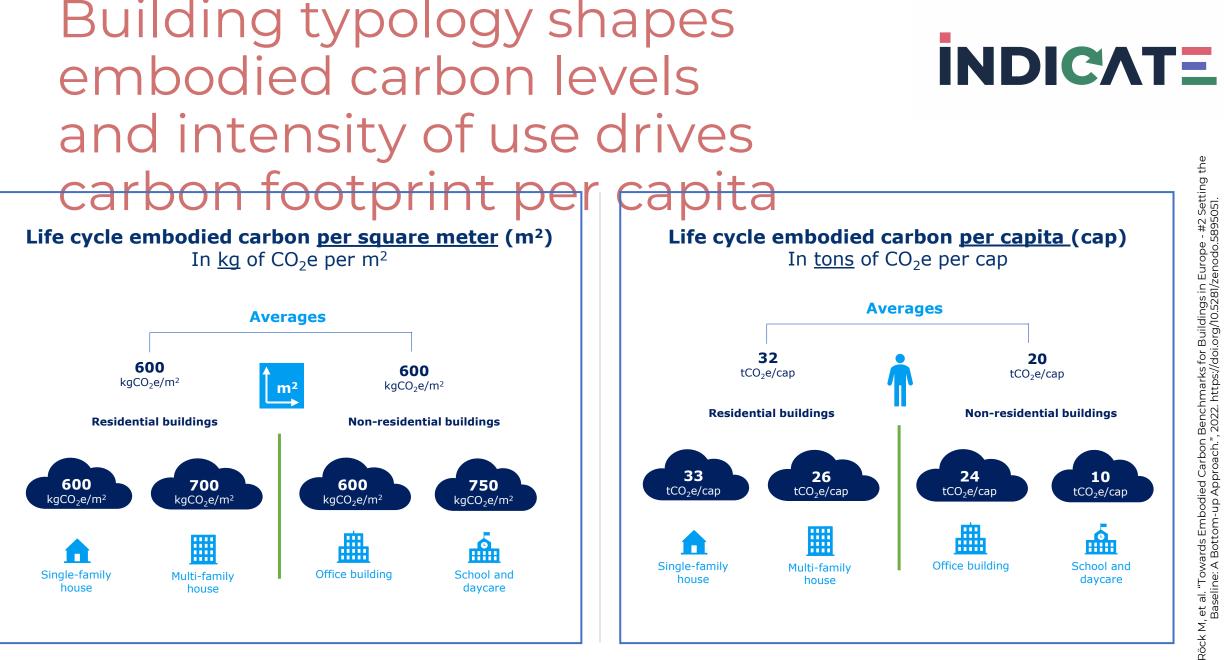
- WLC databases and initiatives
- Various countries <50 cases
- Five EU countries >50 cases
 - Belgium
 - Denmark
 - Finland
 - France
 - Netherlands

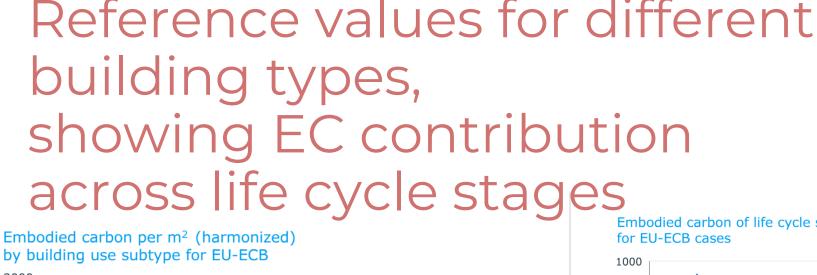
RICS Embodied	<50 cases
Carbon Database	AT, UK, CH, Europe
IEA EBC Annex 72	> 50 cases
Röck et al.	Five EU countries:
2020/2021	DK, FR, BE, NL, FI
Carbon Leadership	=
Forum (Europe)	EU-ECB dataset

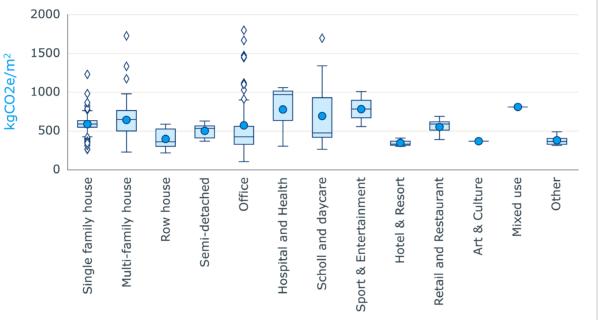
Data sources & partners

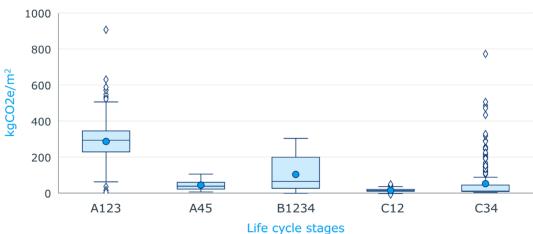

- Ministry (Infrastructure, Technology, Buildings, etc.)
 - Support data collection to inform own policy development
 - Synergies w/ overall digitalization efforts (e.g. building permits)
- Green Building Alliances (e.g., local GBC)
 - Help identify key stakeholders and partners
 - Leverage networks to identify and mobilize data partners
- Industry partners, consultancies, academia
 - With LCA/WLC experience, willing to share in-house data
 - Contract to generate new data on representative WLC cases

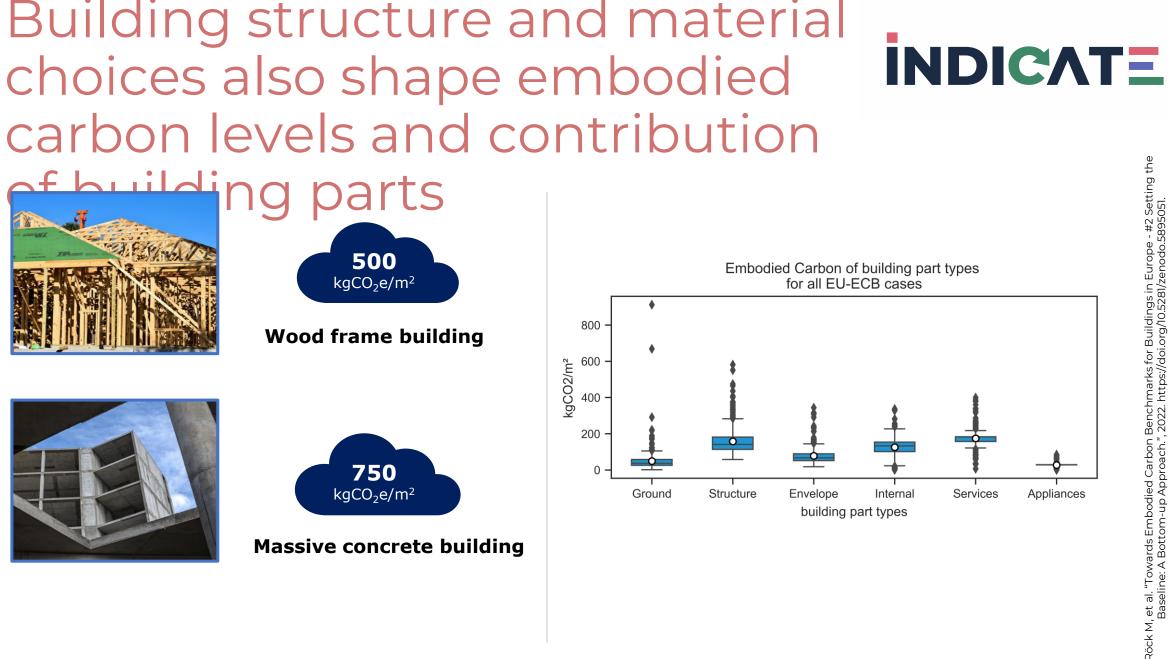
Dataset composition


Number of cases per country and by building typology:


Typology	BE	DK	FI	FR	NL	EU-ECB
Non- residential	-	34	31	27	18	110
Residential	105	38	28	434	29	634
All types	105	72	59	461	47	744


Embodied carbon matters: 2/3 occur as upfront carbon



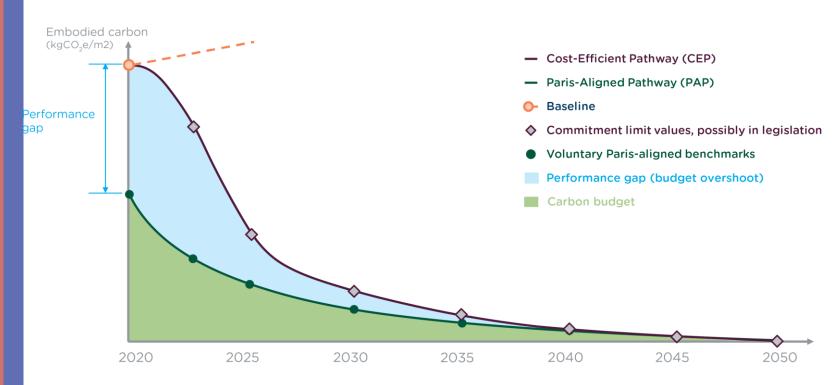


Building use subtype

Embodied carbon of life cycle stage

Towards embodied carbon benchmarks for buildings in Europe – Project outline

> **#1 What data is available on embodied carbon?** Embodied carbon data availability and quality in the EU


Designed and executed by: RAMBCLL

BUILD DEPARTMENT OF THE BUILT ENVIRONMENT

AALBORG University

With partners from KU Leuven (BE), NIBE (NL), CSTB (FR), and Ministry of the Environment of Finland (with Granlund/OneClickLCA)

All stakeholders need to act with urgency to enable building sector decarbonization

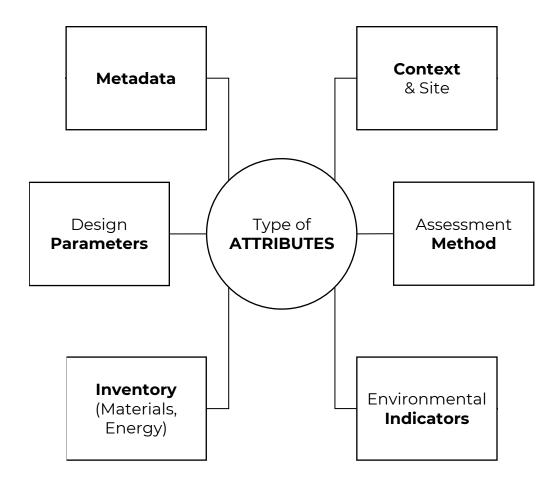
- Any delay increases the budget overshoot
- Data collection and emission reduction need to be stepped up
 - Governments to define standard methods with strong incentives
 - **Certification** bodies to share LCA data and promote budget-aligned benchmarks
 - Investors to align portfolios with reference values and move to climate neutrality in buildings
 - **Designers** to design buildings within reference values

A performance framework can bridge the gap between baseline and carbon budget

RAMBOLI

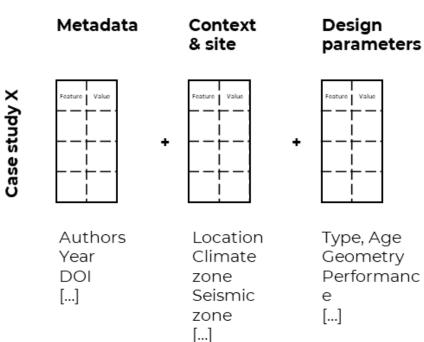
KU LEUVEN

Recommendations

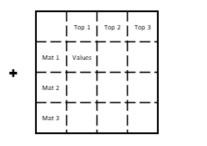

- Collaborative effort needed to create the evidence base through LCA/WLC building data collection and benchmarking
- Combining both **bottom-up and top-down** considerations on embodied carbon measures
- Defining Paris-aligned pathway for climate neutrality and a cost-efficient pathway as a reduction commitment by the industry

Data processing and analysis

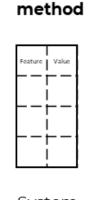
Data collection - Attributes



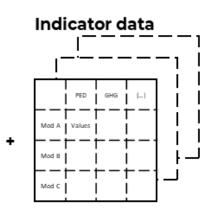
*Showing selected attributes from data collection template of Röck et al. 2023 (forthcoming)



Data collection - Structure


eature | Value

Inventory data


Materials (Top 5) Energy Systems [...]

÷

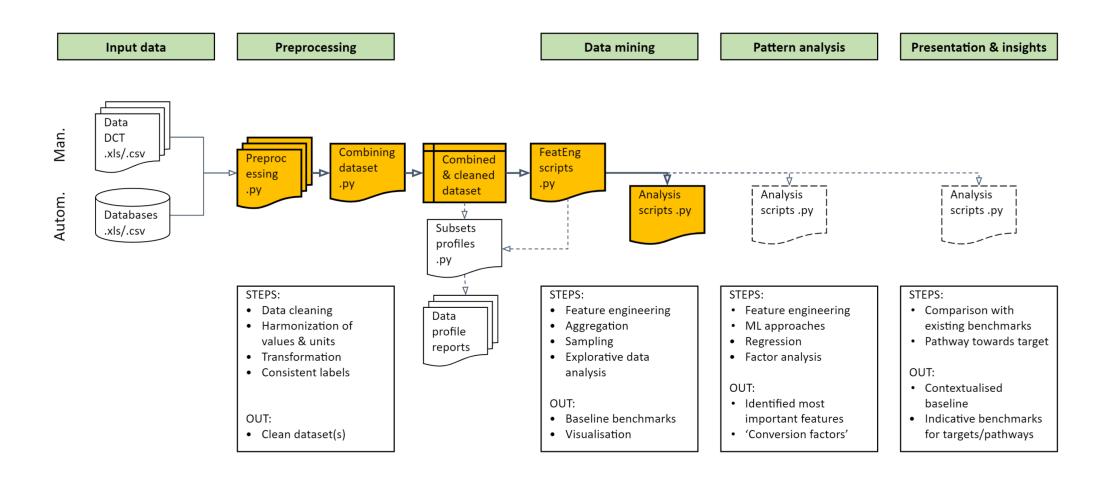
Assessment

System boundaries Rerence study period Background data [...]

PED & GHG - Embodied, operational - Per life cycle module [...]

Data collection - Template

- Spreadsheet-based data collection template (DCT)
 - Free input (numbers, text)
 - Preset options (categories, ranges)


	Note: Put 'n/a', if no value can be provided. Avoid empty cells. * = Minimum Requirement										
	*	*	*	*	*	*			*	*	
GROUP	ADMINISTRATION		BUILDING DESCRIPTIC	UILDING DESCRIPTION							
Attribute Name	Project Name / Code	Project Contact		Building sub typology	Project type	Country of Construction		Year of construction completion	Year of construction completion interval	Project data status	Gross Area (Definition
Unit remarks 1	Please specify Fictive Example Case	Please specify EU-ECB	Use drop-down Residential	Use drop-down Multi-family house	Use drop-down	Use drop-down Denmark	Number [integer] 2017			Use drop-down Detailed design	Use drop-down [Denmark (BR18)
2	Freerre Example Gabe	20 200	hestachear	indici runny nouse		bennark	2017	2015	2010 2010		berniark (brizb)
3											
4											
5											
6											
7											
8											
10											
10											
12											
13											
14											

DATA COLLECTION TEMPLATE

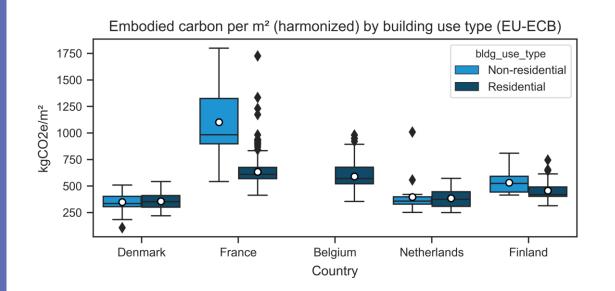
Note: Put 'n/a', if no value can be provided. Avoid empty cells. * = Minimum Requirement

Data processing and analysis

Data harmonization

- Floor area definition
 - Gross floor area (GFA)
- Reference study period
 - RSP_h = 50 years
- Differentiated handling
 - Product & EoL: A1-5, C1-4 (1)
 - Use-phase: B1-4, B6-7 (2)
 - Annualization (3)
- No perfect harmonization, but useful approximation

Formulae

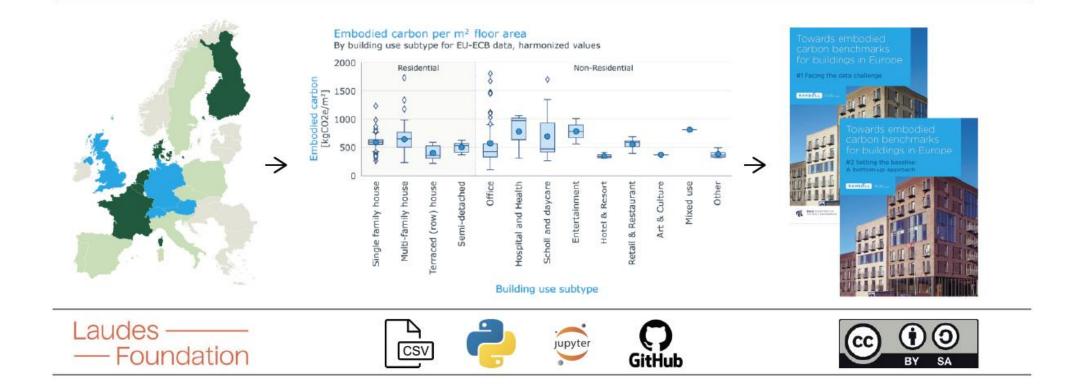

(1) $GHG_{t, h} = GHG_{a, o} * RSP_{o}$ (2) $GHG_{t, h} = GHG_{a, o} * RSP_{h}$ (3) $GHG_{a, h} = GHG_{t, h} / RSP_{h}$

Where:

- GHG = GHG emission values
- RSP = Reference study period
- a = annualized
- h = harmonized
- o = original
- t = total

Challenges to benchmarking

Cross-Europe benchmarking hindered by lack of consistency of study scope, assessment methods, and documentation quality



	Non-res	idential	Residential			
Parts \ LCS	Full life cycle scope (PCMDW)	Limited life cycle scope (PMW)	Full life cycle scope (PCMDW)	Limited life cycle scope (PMW)		
Full parts scope (GLEISA)	819.80	264.69	618.19	-		
w/o Ground (LEISA)	810.00	-	481.63	-		
w/o Internal (GLESA)	-	-	599.19	-		
w/o Appliances (GLEIS)	523.18	349.19	575.49	356.67		
w/o <u>Internal</u> & Appliances (GLES)	-	404.50	-	-		
w/o Services & Appliances (GLEI)	-	-	-	343.00		

INDICATE

Dataset and scripts available

Röck and Sorensen, Embodied Carbon of European Buildings Database (EU-ECB-DB), 2022, <u>https://doi.org/10.5281/zenodo.6671558</u>

Data infrastructure and analytics

EU Level(s) framework

- Common EU sustainability reporting framework with wide applications
- Reporting standard for material QTO, Whole Life Carbon, and LCA results
- Options for adapting scope and assessment methods (Level 1/2/3)
- Results reported by building part (-1/-2) and by life cycle stage (EN 15978)

Data collection - Template

- Spreadsheet-based data collection template (DCT)
 - Free input (numbers, text)

DATA COLLECTION TEMPLATE

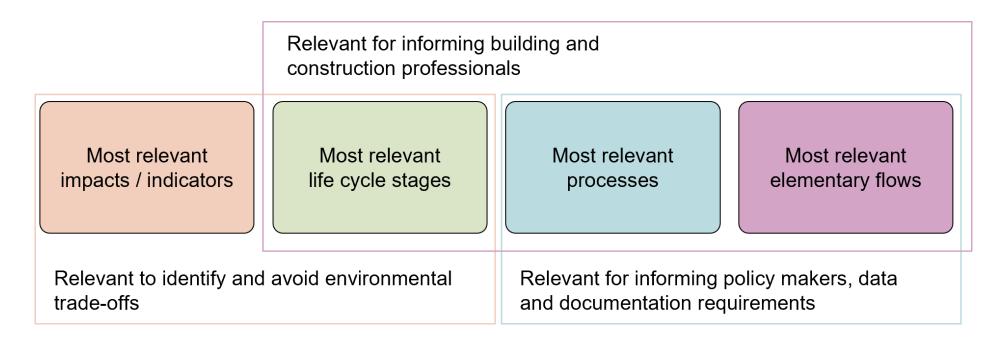
• Preset options (categories, ranges)

	Note: Put 'n/a', if no value	e can be provided. Avoid em	pty cells. * = Minimum I	Requirement							
	*	*	*	*	*	*			*	*	
GROUP	ADMINISTRATION		BUILDING DESCRIPTION								
Attribute Name	Project Name / Code	Project Contact	Building type	Building sub typology	Project type	Country of Construction	Year of construction permit	Year of construction completion	Year of construction completion interval	Project data status	Gross Area Definition
Unit remarks	Please specify	Please specify	Use drop-down	Use drop-down	Use drop-down	Use drop-down	Number [integer]	Number [integer]	Use drop-down	Use drop-down	Use drop-down
1	Fictive Example Case	EU-ECB	Residential	Multi-family house	New Built	Denmark	2017	2019	2015-2019	Detailed design	Denmark (BR18)
2											
3											
<u>+</u>											
5											
,											
}											
)											
.0											
1											
12 13											
13											

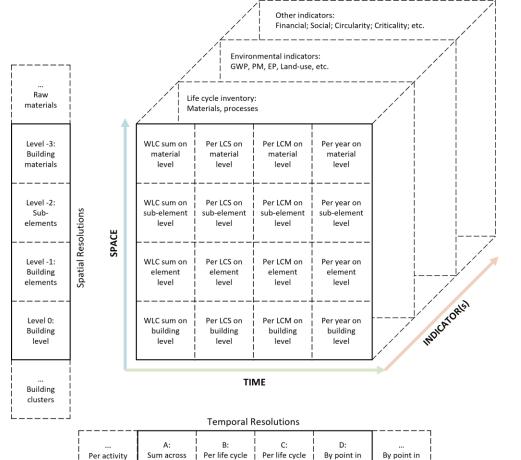
EU Level(s) framework

Building parts			Life cycle	e stages													
Level -1	Level -2	Level -3	A1 - A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	(D)
(Elements)	(Sub-elements)	(Materials)															. ,
	Piles	[]															
Foundations (substructure)	Basements																
	Retaining walls	-															
	Frame (beams, columns and																
Load bearing structural	slabs)																
frame	Upper floors																
	External walls																
	Balconies	-															
	Ground floor slab																
Non-load bearing elements	Internal walls, partitions and																
	doors																
	Stairs and ramps	-															
	External wall systems, cladding																
	and shading devices																
Facades	Façade openings (including																
	windows and external doors)																
	External render	-															
Roof	Structure	-															
ROOT	Weatherproofing																
De alvia e fe allisia e	Above ground and																
Parking facilities	underground																
	Sanitary fittings	-															
	Cupboards, wardbrobes and																
	worktops																
Fittings and furnishings	Ceilings finish																
	Wall finish																
	Floor coverings and finishes																
Drainage systems	Drainage system	-															
	Connections and diversions																
Utilities	Substations and equipment																
	Paving and other hard																
Landscaping	surfacing																
	Fencing, railings and walls																
	Light fittings	_															
In-built lighting system	Control systems and sensors																
	Heating plant and distribution																
	Cooling plant and distribution																
Energy system	Electricity generation and																
	distribution																
	Air handling units																
Ventilation system	Ductwork and distribution																
	Cold water distribution	-															
	Hot water distribution																
Sanitary systems	Water treatment systems																
	Drainage system																
	Lifts and escalators	-															
	Firefighting installations																
	Communication and security																
Other systems	installations																
	Telecoms and data																
	installations																

EU Level(s) requirements to align with


Adapt method to national needs

Reporting and benchmarking infrastructure


Hotspot analysis protocol

- Screening and analysis of environmental hotspots
 Dreduct/organizational onvironmental featurints (DEE/OEE)
 - Product/organizational environmental footprints (PEF/OEF)

SLiCE building data model

(at stock

level)

whole life

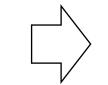
cycle (WLC)

stage

(LCS)

module

(LCM)


time

(yearly)

time

(..., hourly)

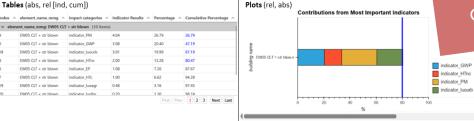
[]	Building	Element	Worksection	Construction material/product	[]
-	Bldg A	Elem A	Wsec A	MatC A	-
	Bldg A	Elem A	Wsec A	MatC B	
	Bldg A	Elem A	Wsec B	MatC A	
	Bldg A	Elem A	Wsec B	MatC C	
	Bldg A	Elem B	Wsec C	MatC D	
	Bldg A	Elem B	Wsec C	MatC E	
	Bldg A	Elem B	Wsec A	MatC A	
	Bldg A	Elem B	Wsec A	MatC B	
	[]	[]	[]	[]	

•	Temporal attributes (keys) Building life cycle stages/modules and point in time						
[]	Life cycle stage	Life cycle module	Nested module	Point in time (year)	[]		
-	A - Production	A1	-	0	-		
-	A - Production	A2	-	0			
-	A - Production	A3	-	0			
-	B - Use phase	B6	-	1			
-	B - Use phase	B6		2			
-	B - Use phase	B6		3			
-	B - Use phase	B4	A1	15			
-	B - Use phase	B4	A2	15			
-	B - Use phase	B4	A3	15			
-	[]	[]	[]	[]	-		

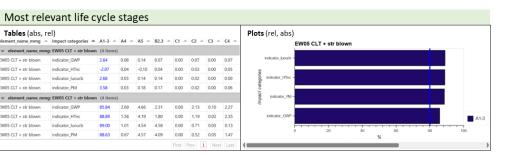
Indicator attributes (values) LCI amounts and LCIA results							
[]	Material amount	Energy amount	Indicator GWP	Indicator PM	[]		
-	xx kg	-	xx kgCO2e	xx kgPM2,5e	-		
	-	yy kWh	yy kgCO2e	yy kgPM2,5e			
	zz kg	zz kWh	zz kgCO2e	zz kgPM2,5e			
	[]	[]	[]	[]			

SLiCE hotspot analysis tool

SLiCe – Hotspot Analysis Tool (Prototype)


Settings

Load data
SLICe dataset
Weighting factors


Hotspots_Analysis		
Attribute object		
element_name_mmg	•	
Filter available options		Filter selected options
W-LB01 Thoma W-LB04 str-Im prefab W-LB05 tim frame + hemcr bicks IF02 Thoma + EPS IF05 tim frame + str blown IF06 tim frame + str blown FR01(CS3) Thoma + hemcr bicks FR01(CS3) Thoma + hemcr bicks FR01(CS3) Thoma + hemcr bicks FR04 tim frame + str bate FR04 tim frame + str bate	>>	EW05 CLT + str blown EW09.1 lim frame (single) + str blo EW10.1 lim frame (single) + hem in
Filter available options		Filter selected options
	>>	indicator_GWP indicator_old indicator_aci indicator_EP indicator_pof indicator_olar indicator_dar indicator_HTrc indicator_FMT indicator_PM
Weigh factor		
WE_Central	•	
Attribute Ics		
LCS_IVI_1	•	
Filter available options		Filter selected options
	>> <<	A1-3 A4 A5 C1 C2 C3 C4 B2.3 B4.1 B2.1
Attribute process		

Results

Most relevant indicators

Invitation to align and collaborate!

What next?

82

Recommendations

- Collect/generate data for representative samples
 - Start by characteristics of building stock & new construction activity

INDICATE

- Extend scope of analysis and documentation requirements
 - Extend attributes, e.g., with structural design parameters
 - Align documentation template with Level(s) elements and materials
- Advance processing workflows and analytics
 - Interactive WLC dashboard for visual exploration
 - SLiCE data logic and hotspot analysis tool
- Support public & private stakeholders to advance WLC data

Q&A

Cocreation session Representative buildings sample

and WLC data attributes

Outline

Representative sample and data attributes [40min]

- Approach for setting representative buildings sample [15 min]
- Defining relevant WLC attributes before collection [25 min]

What is our representative buildings sample?

• Which are the primary stakeholders addressed by the WLC data initiative towards benchmarking?

INDICATE

- Should the building cases be representative of all new construction, or a fraction relevant to stakeholders?
- What are relevant partners, data sources, e.g., to consult on statistical composition of building stock activities?

Discussion notes

• Use statistical data on most common materials, buildings

- Residential have highest volume (materials, surface, budget)
- Different typologies, SFH
- Regional differences
 - Construction culture, climate/energy, materials
- Local councils have typology definitions
 - Statistical profile of new construction shared to ministry
 - Data quality validation required
- Cost-effectiveness study EPBD; Tabula/Episcope?
- Data sources for non-residential buildings?

What is our representative buildings sample?

- Which building characteristics are representative?
 - Building typology (SFH, MFH, offices, ...)
 - Geometry and size (Floor area (interval), window-to-wall, ...)

INDICATE

- Structure and materials (Structural requirements, spans, ...)
 - Seismic requirements,
- Energy performance (Heating energy use, U-values, ...)
 - Climate zones...
- Which information is needed to make sense of results?
 - LCA database, LCIA method, scenarios, service lives, etc.

Archetype modelling

- Representation = Archetypes
 - Real world cases
 - Synthetic cases
- Pros and cons of both
 - Real: More 'realistic'
 - Synthetic: More 'adaptable'

- Synthetic archetypes
 - E.g., Belgium (EPBD cost-effective)

INDICATE

- Benefits of synthetic
 - Control constants/variables (e.g.)
 - Constant: Geometry, materials
 - Variable: Energy performance, systems, seismic requirements

Discussion notes

Combination of synthetic and real cases

- 50 synthetic, tuned to represent the regional differences
- 10+ real cases collected from industry partners
- Use data collection and analysis to assess method differences
- Elaborate data collection and attributes bilaterally
- Question about number of climate regions
 - 5 climate regions required or inefficient?
 - Focus resources, e.g., on testing more typologies, materials?
- Archetypes available from national renovation strategy
 - Residential only, could inform INDICATE typology/geometry
 - Potential synergies for future WLC benchmarks of renovation

Which attributes to analyse?

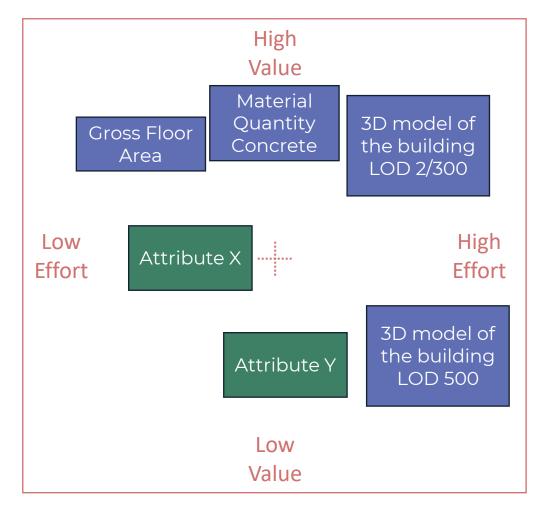
1. Brainstorm individually [10 min]

• Write all attributes that come to mind -1 sheet per attribute

Infobox

- Try to be specific with attributes
 - Gross Floor Area
 - Material Quantity Concrete
 - •
 - 3D Model LOD 300

Which attributes to analyse?


- 1. Brainstorm individually [10 min]
 - Write all attributes that come to mind I sheet per attribute

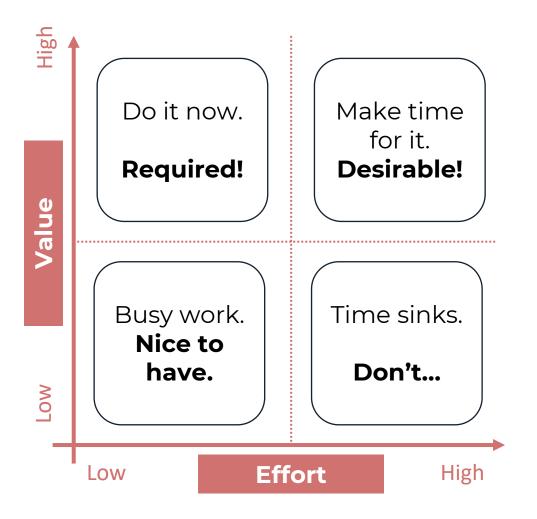
2. Systematically evaluate [10 min]

- Set up value/effort matrix (on table, on board)
- Place cards and move until equilibrium in silence!

Value / Effort Matrix

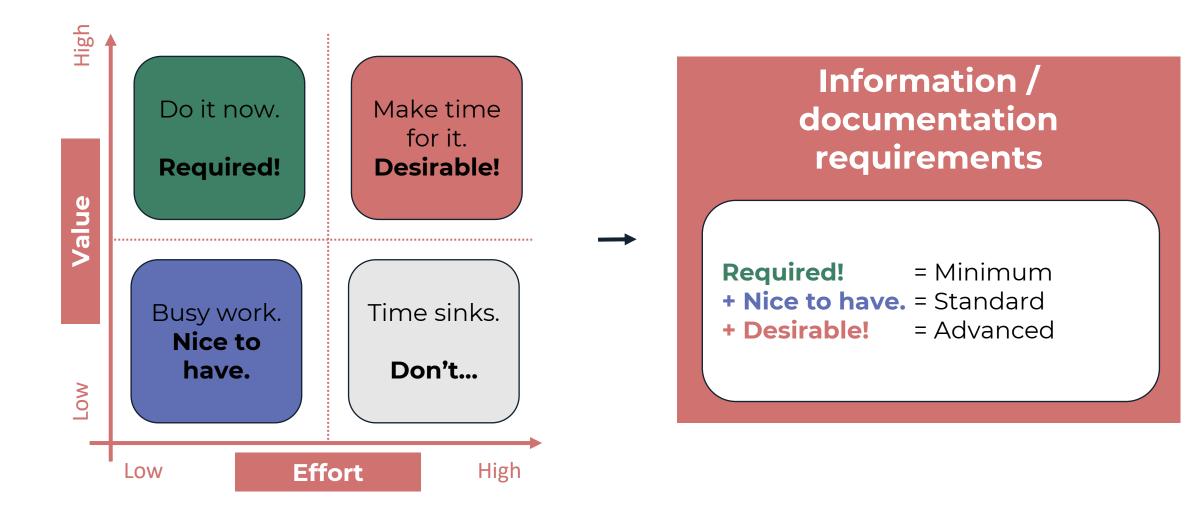
Infobox

- Cards can move back and forth, if needed
 - Don't fight, seek common ground
- Multiple mentions of same attribute are OK
 - Can be combined or separate


Which attributes to analyse?

- 1. Brainstorm individually [10 min]
 - Write all attributes that come to mind 1 sheet per attribute
- 2. Systematically evaluate [10 min]
 - Set up value/effort matrix (on table, on board)
 - Place cards and move until equilibrium in silence!
- 3. Discuss outcomes and implications [10 min]
 - What un/expected outcomes do we see?
 - How can we obtain the relevant data?

Photo!



Value / Effort Matrix

Value / Effort Matrix

Next steps

•

- Implement attributes to data collection template (DCT)
- Continue definition of representative sample and cases
- Advance on WLC data collection or modelling
- Proceed with processing, analysis and benchmarking

Defining a national WLC implementation approach

Presentation and workshop

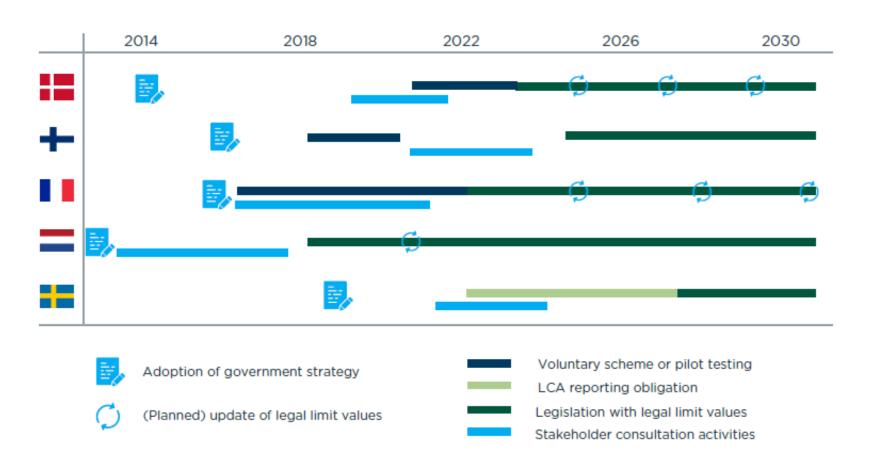
KU LEUVEN

Smith

Agenda input

- Frontrunners
- Building Blocks for WLC regulation
- Starting point
- Challenges and opportunities

EU Update


- Not if, but how to regulate WLC
- Comprehensive EU WLC reporting requirements coming soon
- Data is not yet accurate, but we need action more than precision
- Start measuring, share data and build capacity on WLC data collection and baseline analysis for ensuring future target compliance
- Frontrunner countries have the support of the EU

Leading EU Member States

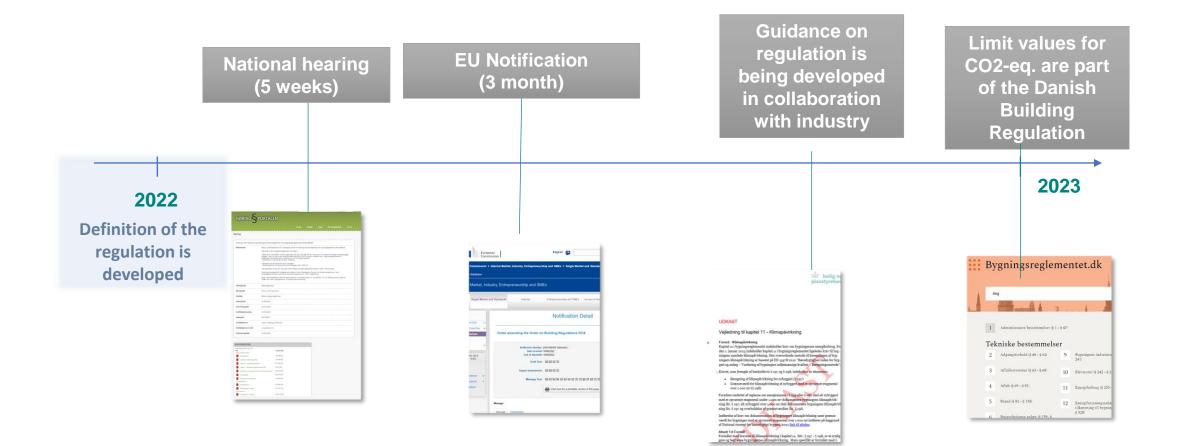
- 2012 Netherlands (Documentation 2012; limit value 2018)
- France (2021)
- Sweden (2022 Documentation)
- Norway (2022 Dokumentation)
- Denmark (2022)
- Finland (2023)
- Germany, UK, Switzerland (WLC requierements for public buildings)

Frontrunner countries: "key **INDICATE** ingredients"

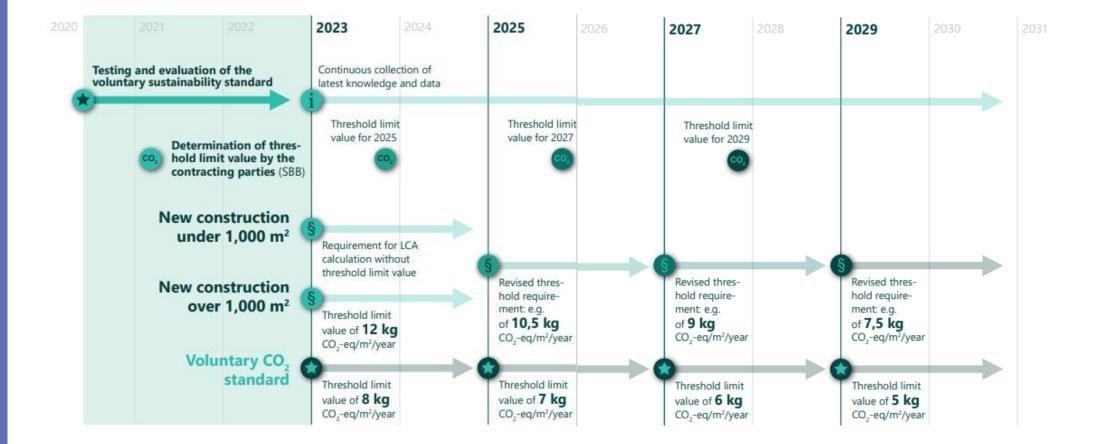
Key ingredients:

- Government strategy
- Stakeholder
 enagement
- Voluntary scheme / pilot testing
- Gradual implementation of legislation

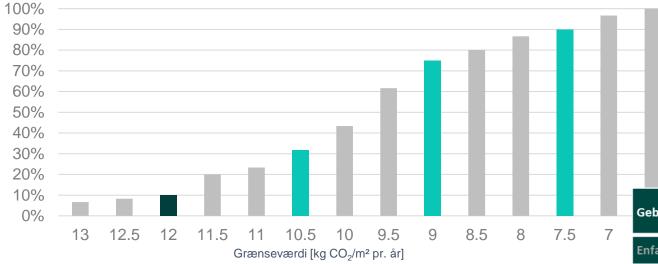
Source: Rambol / KU Leuven 2023



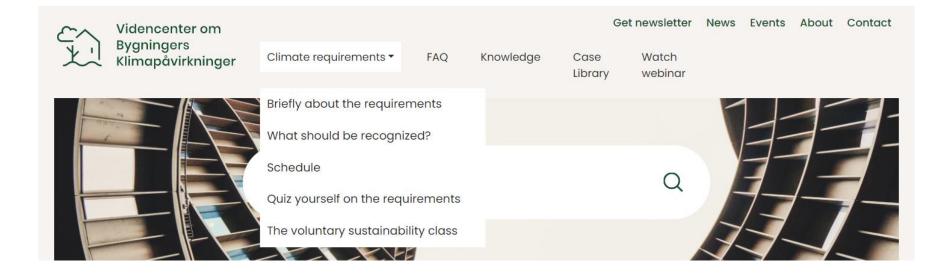
Example DK: process (I)



Example DK: process (II)



Example DK: Outlook


Share of buildings below the limit value (from reference analysis of 60 buildings)

How many buildings need to comply with the limit value?

Gebäude pro. Jahr	Unter 1000 m²	Über 1000 m²	Insgesamt
Enfamiliehuse	4.109	0	4.109
Rækkehuse	529	2	531
Etageboliger	264	210	474
Produktionsbygninger	939	176	1.125
Kontor og handel	507	156	662
Kultur, sundhed, idræt, undervisning	167	44	210
Gesamt (Anzahl)	6.515	597	7.112
Gesamt (m²/Jahr)	1.676.781	1.944.102	3.621.205

Example DK: other success factors / good practice

- Nordic Co-operation
- Knowledge Centre on the Climate Impacts of Buildings

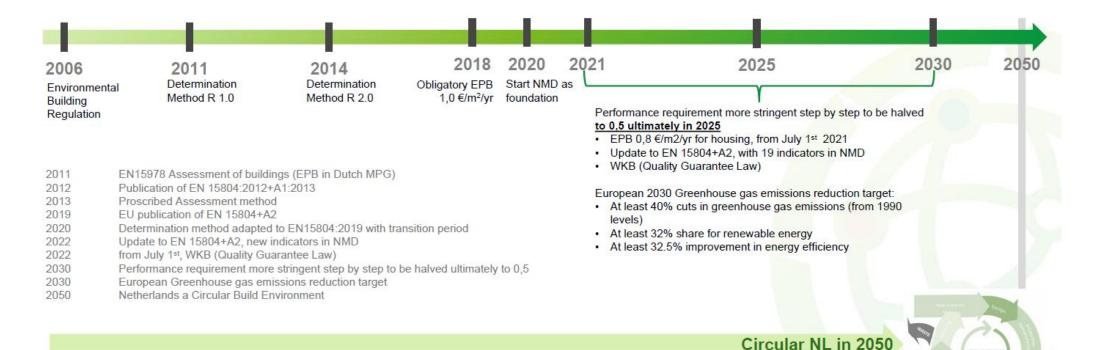
Nordic

Co-operation

INDICATE

<u>Nordic Harmoni-</u> <u>sation of Life</u> <u>Cycle</u> Assessment	<u>Circular Business</u> <u>Models and</u> <u>Procurement</u>	Sustainable Construction Materials and Architecture
Assessment Harmonisation, regulation, digitalisation, limit values, climate reporting.	Circularity in the construction industry and for public developer through capacity building.	Opportunities and barriers to using w and other biobase construction materials.

Emission-free Construction Diminishing emissions


Sites

Programme Secretariat and Activities for Increased Reuse of Construction Materials

The Netherlands: Process

Time Line

The road to buildings decarbonization in The Netherlands

The Netherlands: policy landscape NMD Organization and Committees

Public-Private process

Building regulation

Product database

XEX Bouw-Gunnen Government besluit op duur-2012 zaamheid Building regulation fo Most Economically environmental Advantageous Tender performance Design & Construction Green Breeam Public Calc+ calculatio tenders software LCA Prescribed assessment method MRPI/EPD Environmental Performance of Buildings (EPB) ---construction product

5.4

INDICATE

The Netherlands: practice

- Consultation ongoing to sharpen the Energy Performance of Buildings value to 0,5 in 2025 – outcome expected in June
- Monetary value (€/m2/year) widely used in public procurement

FINLAND - Timeline

2017

 CO2 limit values for buildings in low carbon construction roadmap*

2019

- Agreement climate neutrality 2035
- Nordic agreement harmonization LCA approach for buildings

2021-2022

- Legislative preparations**
- Draft Legislative for proposal
- Public hearings (1 & 2)

2023

 Land use and Construction Act reform approved – WLC regulation to
 follow

INDICATE

01-2025

Testing and method development

- Control system impact assessments
- Development of the carbon footprint calculation model and emissions database
- Know-how and tools
- Testing in public construction projects and in the private sector

• Preparation of regulatory guidance and possible incentives

Preparing control system

- Connection to planning and energy management
- Expansion of pilot projects
- Preparation of building emission data monitoring and statistics

- Monitoring in-use
- Possible notification obligation before binding limit values
- The building base can be connected to the control in stages
- Monitoring the emission data of the building stock

FINLAND – Policy landscape

Calculation tool (.xls)

Auto	Save 💽 Off) ~ (d .	-	Rakennusten-h	iilijalanj	aljen-a	rviointity	yokalu-9.1	2.2019-D4EE18D2_	E07C_48
File	Home	Insert	Page	Layout	Formulas	Data	a F	Review	View	Automate	Help
Paste	X Cut Copy ∽		Calibri	11 15	- 11 - A^					åb Wrap Text ⊡ Merge & Cer	
	🗳 Format Pa Clipboard	ainter آلا	0 1	For					Alignm		ILEI U
R97	-	×	× .	f _x							

Rakennusten hiilijalanjäljen arviointityökalu

Luonnos hiilijalanjäljen arvioinnin testausta varten 9.12.2019

Materiaalien päästötiedot

© VTT 2018. Testausvaiheen geneerinen päästötaulukko perustuu VTT:n eri lähteistä kokoamiin ja arvioimiin tuloksiin. Arvot on koottu siten, että ne kattavat elinkaaren vaiheet A1 - A5 (vaiheessa A5 vain arvioidun hukan osalta). Taulukkoa on viime vaiheessa päivitetty muutamilla hyvin karkeasti arvioiduilla tarkistamattomilla arvoilla. VTT:llä on vksinomainen omistus- ja tekijänoikeus kokonaistaulukkoon. Taulukkoa saa käyttää testaamiseen eikä sitä saa muuttaa, käyttää eikä luovuttaa käytettäväksi muuhun tarkoitukseen ilman VTT:n

Materiaali

Hiilijalanjälki Hiilikädenjälki Yksikkö Vaihtoväli (a

PAIKALLAVALUBETONI JA RAUDOITTEET

Betoniteräs	0.474	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C35 (portland)	0.146	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C35 (seossementti)	0.127	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C50 (portland)	0.175	kgCO2e/kg	Ei vaihdeta
Valmisbetoni C80 (Portland)	0.210	kgCO2e/kg	Ei vaihdeta
PIHA JA POHJARAKENTEET			
Betoniantura ja -perustus			
(sis.raudoitteet)	0.160	kgCO2e/kg	Ei vaihdeta

percentaria ja percentari			
(sis.raudoitteet)	0.160	kgCO2e/kg	Ei vaihdeta
EPDM-matto (synteettinen kumi)	2.694	kgCO2e/kg	30
Kevytsora	0.459	kgCO2e/kg	Ei vaihdeta
17	0.000	1 000 //	P1

Emission database (together with Sweden)

С co2data.fi/rakentaminen/#en 0 B ☆ * 🗆

SLIOMI SVENSK A ENGUSH

Emissions database for construction

Welcome to the open, free-of-charge emissions database for construction. The service presents average emissions data on construction products used in Finland and on construction processes and services. The aim is to harmonise the calculation of the climate impacts of buildings throughout their lifecycle and, through this, to promote low-carbon construction.

Emissions data has been compiled on readily accessible summary pages, but you can also read more detailed background studies. At first the service is available in English. Content in Finnish and Swedish will be included later on.

The responsibility for maintaining and developing the database rests with the Finnish Environment Institute SYKE, commissioned by the Ministry of the Environment.

More information about CO2data-service.

The development of the services continues - your feedback is welcome.

What is it all about? Frequently asked questions.

Search	Search	Own list

☆ - Category > Solid wood > Heat treated planed timber for outdoor use

Heat treated planed timber 1.2 kg CO₂e /kg for outdoor use

Lämpökäsitelty höyläpuu ulkokäyttöön

CONSERVATIVE VALUE FOR BUILDING PERMIT CALCULATIONS, GWP (A1-A3)

Version 1.00.008, 2022-12-06

 Collaboration with 100+ industry experts

INDICATE

- Based on existing public information from various sources (RTS EPD, EPD Norge, IBU)*
- Comparison, selection and calculation of averages
- No product specific data
- Three waves of testing – supported with subsidies / beta testing Level(s)

FINLAND

- Assessment method based on Level(s) and EN standards
- Software tools: free tool + market approach (e.g. OCLCA)
- Lessons for method and database development
 - Align with building design practice user friendly, which stage of the design process is this relevant (permit/delivery) and what precision of data is necessary?
 - Link to digitalization and BIM to avoid redundant work
 - Importance of verification different consultants and tools should be tested
 - Assessment of different databases what is required? How to structure the data?
 - Challenge: get small projects online without increasing administrative burden

· · -

FINLAND

- Importance international collaboration
 - Nordic Co-Operation
 - Relief to consult government officials with similar struggles
- Stakeholder engagement
 - Empathic approach understanding concerns is essential
 - Inform in advance now there is time to adjust
 - Offer subsidies to tackle problems
 - Limit values as enforcement method for laggers

2015

 Analysis: what is the WLC-state of affairs among industry – is there a need for regulation?

2017

- Request to propose a calculation method for climate impact of construction products (A1-5)
- 2020
- Proposal for a roadmap and limit values
- Assignment to
 facilitate introduction of legislation

INDICATE

- Launch Database
- Climate register
- Obligation of climate declarations

2022

Scoping challenge	Consultation and method development	Monitoring in-use
	2018 • Method to calculate environmental impact	 Assessment on integrating additional life cycle modules
	(A1-5)	 Updating calculation methods

More data

INDICATE

- Lessons for stakeholder engagement
 - Lawyer involved in drafting legislation how to make it simple? What are the costs?
 - Cost-benefit studies to find balance between reliability and limited administrative burden
 - Public hearings
 - Focus groups with SMEs, software developers, municipalities, architects,
 - Capacity building and information sharing among SMEs the ones without large internal capacity (handbook, webinars, big campaigns, introductory courses)
 - Focus on limited administrative burden
 - Sound scientific basis essential to counter opposition (specific industry)

- Assessment method based on EN standards and aligned with Level(s)
- Software tool & Database

The construction sector's environmental calculation tool

The construction sector's environmental calculation tool

The building sector's environmental calculation tool, BM, is an industry-wide tool for climate calculation of buildings.

> The tool is based on life cycle analysis methodology according to EN 15804 and EN 15978 and enables a non-expert to produce a climate calculation of a building. With the tool, you can calculate how much climate impact different buildings have and how emissions can be reduced through changed material choices and production methods. The calculation can be used to comply with the Act on climate declaration for buildings, Miljöbyggnad's requirements for

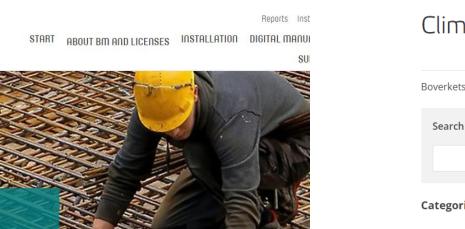
Climate database from Boverket

Other languages

Usten

Boverkets climate database version 02.04.000 updated 24 january 2023.

Search the climate database Search My list


Categories >

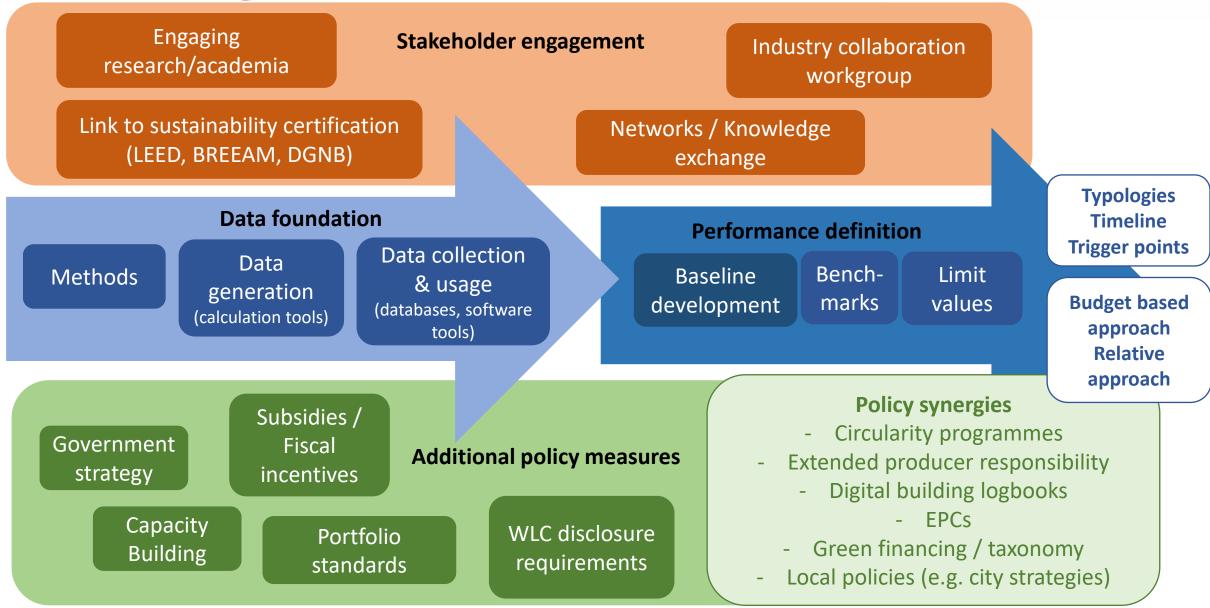
Construction product Blocks and tiles **Building boards** Concrete Insulation Mineral materials Paints and sealants

Solid woods Steel and other metals Waterproofing Windows, doors and glass

Energy services Energy and fuel

- Challenges
 - New government is there still ambition in the ministry?
 - Short time frame did not allow space for proper method development and stakeholder engagement
 - Lacking data for installations / environmental data (EPDs
- Impact assessment and report on legislation being prepared since 2022
 - June : options to implement limit values starting in 2025
 - Including other life-cycle modules
 - August: public hearing
- Significant increase in EPDs since law implementation

Elements of the Toolbox

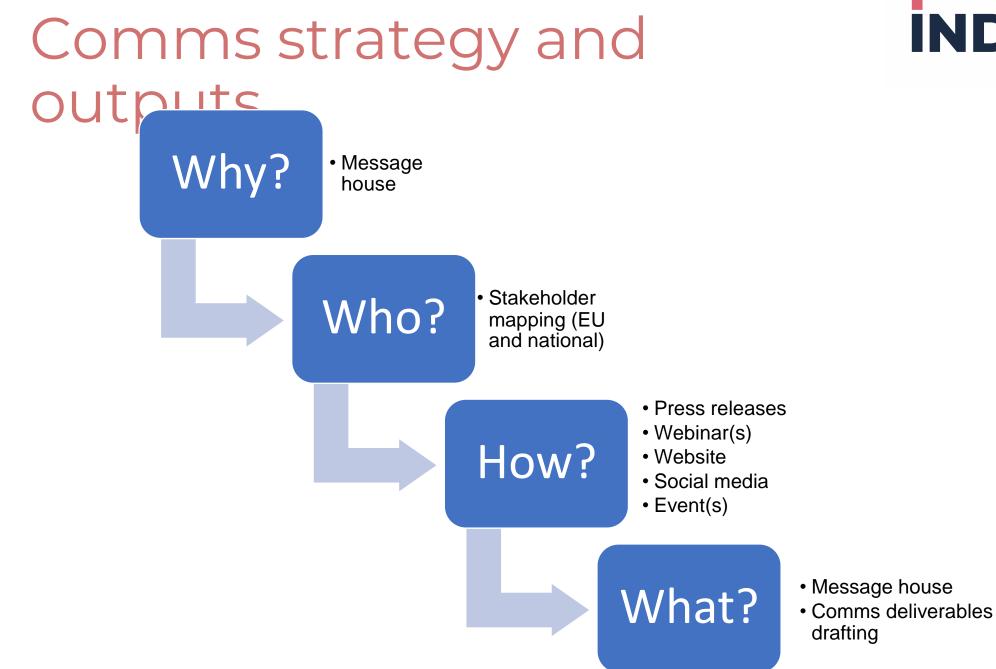

Process & Stakeholder engagement (inform, consult, co/create)

Data foundation

Performance definition

additional policy measures

Building blocks of the toolbox **INDICATE**


KU LEUVEN

Design Sprint Prague, Czechia

Comms workplan, WorldGBC

Smith

INDICATE

Why? Message House

INDICATE

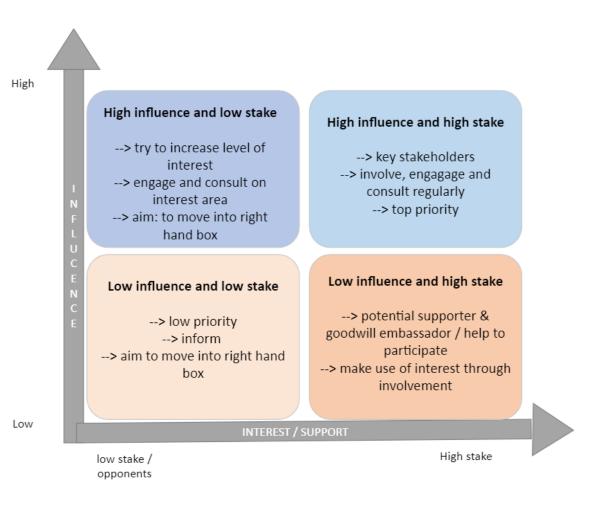
INDICATE is meeting one of the most fundamental challenges to decarbonise buildings – the lack of data! Our unique co-creation approach ensures the data generated will have the necessary buyin to accelerate both industry and policy action.

Relevance:

- Tackling the climate-crisis demands rapid decarbonisation of the whole lifecycle of buildings. Frontrunners in industry are taking action but moving the whole sector will take robust policy
- Policy and industry change is still being held up by the lack of data to set baselines and targets - INDICATE will directly solve this barrier
- National partnerships will be forged between industry, academia and national Government
- This co-creation approach promises to ensure the stakeholders that will then act on the data and outcomes to accelerate policy and industry change

Evidence:

- WorldGBC's extensive stakeholder consultations reveal lack of data as a critical barrier to both political and industry action on whole life carbon
- Relying on industry frontrunners alone is not enough – policy is essential to reach scale
- Analysis of the few countries that have enacted WLC policies shows:
- developing baseline data is a key first step
- Data needs to be trusted by those who will use it
- Co-creation and collaboration between public sector, private sector and academia offers the most promising way to secure that buy-in


Action:

- Everyone can contribute to improving the availability of data!
- Suppliers and manufacturers can ensure they provide Environmental Product Declarations for all their products
- Developers and designers can request EPDs for all products and ensure WLC assessments are performed and published for all their projects
- Public sector and political leaders can support by committing to enact WLC policy and engaging with stakeholders to find the best data and start to develop baselines.

- Bringing embodied carbon upfront, WorldGBC, 2019
- <u>https://annex72.iea-ebc.org/</u>
- Roadmap to climate-proof buildings and construction How to embed whole-life carbon in the EPBD, BPIE, 2022
- <u>EU policy models for reducing whole-life carbon of buildings</u>, Ramboll, 2022
- <u>EU Policy Whole Life Carbon Roadmap</u>, WorldGBC, 2022

Who? Stakeholder mapping **INDICATE**

- Identify most relevant stakeholders (public, private, research)
- Locate on the Influence-Interest map
- Discuss their position & arguments
- Which stakeholders communicate with each other?

How? Comms strategy and **INDICATE** outputs

Press Release

- To be released asap date to be agreed w all partners
- , 1x press release and comms push by all partners

Webpage

- · To be launched alongside press release
- Consist of simple landing-page and general communication templates for national initiatives such as a basic logo, typeface and PowerPoint and whitepaper/brief report template

Webinars & Events

- 1x virtual launch event (webinar) to showcase selected countries with keynote from a frontrunner country
- 1x Hybrid Brussels-based closing-event to showcase results, 1x press release and comms push by all partners, potential
- Leverage other events like COP or similar, where WGBC has a platform, to promote

What? Comms plan

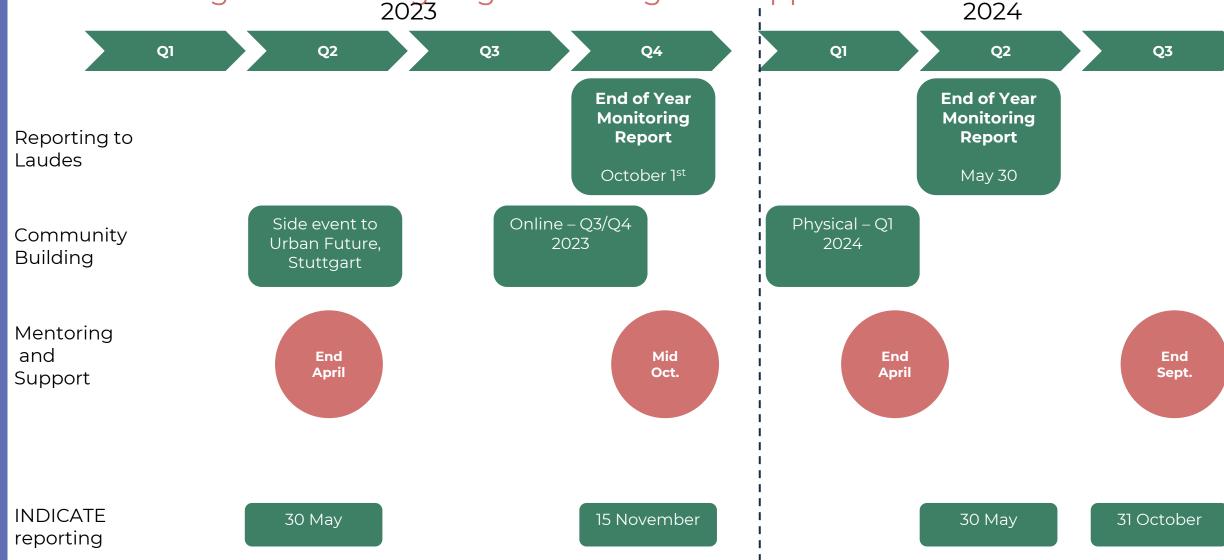
INDICATE

• Q1 2023:

- Website launch –ASAP
- Press release announcing countries
- Events planning
- Q2 2023
 - Launch webinar
 - National comms planning
- Q3 2023
 - Planning stakeholder engagement towards phase 2

KU LEUVEN

Operational support and next steps


Simone Kongsbak Partner, Smith Innovation Smith

INDICATE

The rythm of INDICATE

How to organise the ongoing mentoring and support?

The rythm of INDICATE How to organise the ongoing mentoring and support?

How can we (the INDICATE partners) best support your projects and progress?

The reporting of INDICATE Rubrics

INDICATE

Process Rubrics

A1 Design

A2 Implementation

A3 Monitoring and Adaptation

A4 Communication and Learning

A5 Organisation and Network Capacity

Early and Later Changes Rubrics

B1

Please describe how your national project contributed to increased engagement, preparedness, and support to build national LCA data infrastructure.

Β7

Please describe how your national project contributed to **national datasets being accessed by different stakeholders.** Policy and stakeholder engagement

WLC data and stakeholder engement

Outcome Situation

INDICATE

Rubric	Previous Rating	Current Rating	Current rating justification (evidence & reasoning), including why & how ratings have changed
B#1.			Specific changes
Building the right processes to create			How substantial and valuable
strong, stakeholder-informed policy reforms Please describe how your national project contributed to increased engagement , preparedness, and support to build national LCA data infrastructure.	UNCONDUCIVE		Contribution
B#7.			Specific changes
Redefined Value to refocus the system on			How substantial and valuable
what really matters Please describe how your national project contributed to national datasets being accessed by different stakeholders.	UNCONDUCIVE		Contribution

Side-event at Urban Futures **INDICATE**

Upcomming community building events

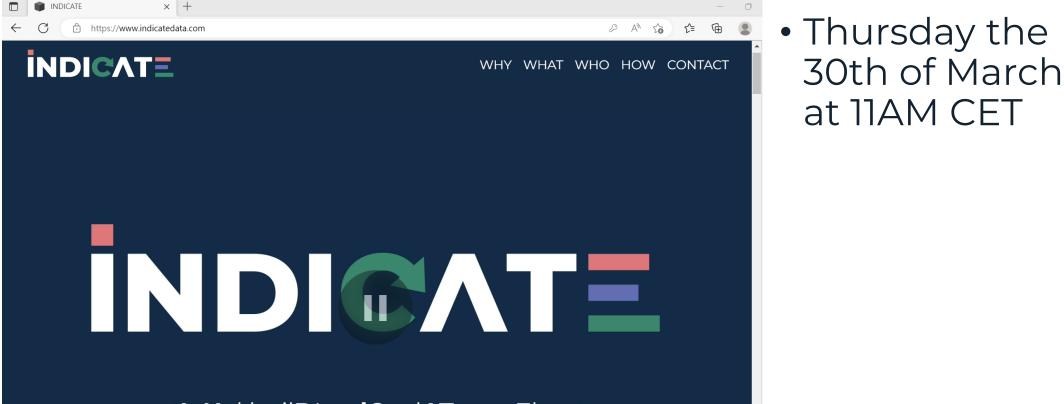
LCA data and calculations

Obstacles and solutions

Community Building

LCA data and

calculations


Side event to Urban

Future, Stuttgart (June 2023)

Exchange experience across the national projects.

LAUNCH Press release and **INDICATE** website

natloNal builDIng ICa dATa accElerator